
Introduction
to Computation
Haskell, Logic and Automata

Donald Sannella · Michael Fourman ·
Haoran Peng · Philip Wadler

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky , Department of Computer Science,
University of Oxford, Oxford, UK
Chris Hankin , Department of Computing, Imperial College
London, London, UK
Mike Hinchey , Lero – The Irish Software Research Centre,
University of Limerick, Limerick, Ireland
Dexter C. Kozen, Department of Computer Science, Cornell
University, Ithaca, NY, USA
Andrew Pitts , Department of Computer Science and
Technology, University of Cambridge, Cambridge, UK
Hanne Riis Nielson , Department of Applied Mathematics
and Computer Science, Technical University of Denmark,
Kongens Lyngby, Denmark
Steven S. Skiena, Department of Computer Science, Stony
Brook University, Stony Brook, NY, USA
Iain Stewart , Department of Computer Science, Durham
University, Durham, UK

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X

https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality instructional con-
tent for undergraduates studying in all areas of computing and information science. From core
foundational and theoretical material to final-year topics and applications, UTiCS books take
a fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semes-
ter course. The texts are all authored by established experts in their fields, reviewed by an in-
ternational advisory board, and contain numerous examples and problems, many of which in-
clude fully worked solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and generally
a maximum of 275–300 pages. For undergraduate textbooks that are likely to be longer, more
expository, Springer continues to offer the highly regarded Texts in Computer Science series, to
which we refer potential authors.

More information about this series at 7 https://link.springer.com/bookseries/7592

https://link.springer.com/bookseries/7592

Donald Sannella · Michael Fourman · Haoran Peng ·
Philip Wadler

Introduction
to Computation
Haskell, Logic and Automata

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-030-76907-9 ISBN 978-3-030-76908-6 (eBook)
https://doi.org/10.1007/978-3-030-76908-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Donald Sannella
School of Informatics
University of Edinburgh
Edinburgh, UK

Michael Fourman
School of Informatics
University of Edinburgh
Edinburgh, UK

Haoran Peng
School of Informatics
University of Edinburgh
Edinburgh, UK

Philip Wadler
School of Informatics
University of Edinburgh
Edinburgh, UK

https://doi.org/10.1007/978-3-030-76908-6

V

Preface

This is the textbook for the course Introduction to Computation, taught in the
School of Informatics at the University of Edinburgh.

The course carries 10 ECTS credits, representing 250–300 hours of study,
and is taken by all undergraduate Informatics students during their first se-
mester. The course is also popular with non-Informatics students, including
students taking degrees in non-science subjects like Psychology. It has no for-
mal prerequisites but competence in Mathematics at a secondary school level
is recommended. Around 430 students took the course in 2020/2021. It has
been taught in essentially the same form, with occasional adjustments to the
detailed content, since 2004/2005.

First-year Informatics students also take a 10-credit course in the second
semester that covers object-oriented programming in Java, and a 10-credit
Mathematics course in each semester, on linear algebra and calculus. (Plus 20
credits of other courses of their choice.) Together, these courses are designed
to provide a foundation that is built upon by subsequent courses at all lev-
els in Informatics. This includes courses in theoretical and practical topics, in
software and hardware, in artificial intelligence, data science, robotics and vi-
sion, security and privacy, and many other subjects.

Topics and Approach

The Introduction to Computation course, and this book, covers three topics:

5 Functional programming: Computing based on calculation using data
structures, without states, in Haskell. This provides an introduction to
programming and algorithmic thinking, and is used as a basis for intro-
ducing key concepts that will appear later in the curriculum, including:
software testing; computational complexity and big-O notation; modular
design, data representation, and data abstraction; proof of program prop-
erties; heuristic search; and combinatorial algorithms.

5 Symbolic logic: Describing and reasoning about information, where
everything is either true or false. The emphasis is mainly on propositional
logic and includes: modelling the world; syllogisms; sequent calculus; con-
junctive and disjunctive normal forms, and ways of converting proposi-
tional formulae to CNF and DNF; the Davis-Putnam-Logemann-Love-
land (DPLL) satisfiability-checking algorithm; and novel diagrammatic
techniques for counting the number of satisfying valuations of a 2-CNF
formula.

5 Finite automata: Computing based on moving between states in response
to input, as a very simple and limited but still useful model of computa-
tion. The coverage of this topic is fairly standard, including: determinis-
tic finite automata; non-deterministic finite automata with and without
ε-transitions; regular expressions; the fact that all of these have equivalent
expressive power; and the Pumping Lemma.

These three topics are important elements of the foundations of the dis-
cipline of Informatics that we believe all students need to learn at some point
during their studies. A benefit of starting with these topics is that they are
accessible to all first-year students regardless of their background, including
non-Informatics students and students who have no prior exposure to pro-
gramming. At the same time, they give a glimpse into the intellectual depth of

ECTS is the European Credit
Transfer and Accumulation
System, which is used in the
European Union and other
European countries for comparing
academic credits. See 7 https://
en.wikipedia.org/wiki/European_
Credit_Transfer_and_
Accumulation_System.

One aspect that is not quite
standard is that our NFAs may
have multiple start states; this is a
useful generalisation that
simplifies some aspects of the
theory.

https://en.wikipedia.org/wiki/European_Credit_Transfer_and_Accumulation_System
https://en.wikipedia.org/wiki/European_Credit_Transfer_and_Accumulation_System
https://en.wikipedia.org/wiki/European_Credit_Transfer_and_Accumulation_System
https://en.wikipedia.org/wiki/European_Credit_Transfer_and_Accumulation_System

VI Preface

Informatics, making it clear to beginning students that the journey they are
starting is about more than achieving proficiency in technical skills.

By learning functional programming, students discover a way of think-
ing about programming that will be useful no matter which programming lan-
guages they use later. Understanding of at least basic symbolic logic is essen-
tial for programming and many other topics in Informatics. Going beyond
the basics helps develop clarity of thought as well as giving useful practice
in accurately manipulating symbolic expressions. Finite automata have many
practical applications in Informatics. Basic automata theory is simple and ele-
gant, and provides a solid basis for future study of theoretical topics.

We choose to teach these three topics together in a single course because
they are related in important and interesting ways, including at least the fol-
lowing:

5 Symbolic logic may be used to describe properties of finite automata and
functional programs, and their computations.

5 Functional programming may be used to represent and compute with log-
ical expressions, including checking validity of logical reasoning.

5 Functional programming may also be used to represent and compute with
finite automata.

5 Functional programming may even be used to represent and compute
with functional programs!

5 There is a deep relationship between types and functional programs on
one hand, and logical expressions and their proofs on the other.

5 Finite automata and logical expressions are used in the design and con-
struction of both hardware and software for running programs, including
functional programs.

In the course of teaching functional programming, symbolic logic, and finite
automata, we explain and take advantage of these relationships. Therefore,
we cover the material in two intertwined strands—one on functional pro-
gramming, and one on symbolic logic and finite automata—starting with the
basic concepts and building up from there.

We try to keep things simple—even though they won’t always feel sim-
ple!—so that we can work out clearly what is going on, and get a clear picture
of how things work and how they fit together. Later, this provides a basis for
working with more complicated systems. It turns out that even simple systems
can have complex behaviours.

Prerequisites

No prior background in programming is assumed. Admission to the Univer-
sity of Edinburgh is highly selective and all of our students are intelligent and
have good academic records, but they have a very wide range of backgrounds.
While some of them have never programmed before, others start university as
highly proficient programmers, some having won programming competitions
during secondary school. But only a few have been exposed to functional pro-
gramming. Teaching functional programming in Haskell is an excellent way
of levelling out this range of backgrounds. Students who have never pro-
grammed before need to work a little harder. But students who have program-
ming experience often have just as much difficulty understanding that Haskell
is not just Python with different notation.

Beginning Informatics students generally have a good mathematical back-
ground, but few have been exposed to symbolic logic. And they will often lack
knowledge of or sufficient practice with some topics in Mathematics that are
relevant to Informatics. Some introductory mathematical material is there-
fore included—Chap. 1 (Sets) and most of Chap. 4 (Venn Diagrams and

Pronunciation of symbols, names,
etc. is indicated in marginal notes
where it isn’t obvious. It’s a small
thing, but we find that not
knowing how to say a formula or
piece of code in words can be a
barrier to understanding.

http://dx.doi.org/10.1007/978-3-030-76908-6_1
http://dx.doi.org/10.1007/978-3-030-76908-6_4

VII
Preface

Logical Connectives)—that will already be well known to many students but
might have been presented differently or using different notation.

Using this Book for Teaching

At the University of Edinburgh, almost all of the material in this book is
taught in 11 weeks, with four 50-minute lectures per week—usually two on
functional programming and two on logic or automata—plus one optional
lecture covering basic concepts in Mathematics.

Since doing exercises is essential for learning this material, we set exer-
cises in functional programming and in logic/automata each week, and expect
students to devote considerable time to working on them. Similar exercises
are provided at the end of each chapter of this book. In weekly tutorial ses-
sions, the students work on and discuss their solutions to these exercises. To
provide some extra help and encouragement for students who are less con-
fident, we have found it useful to offer students a choice between “begin-
ner-friendly” and normal tutorial sessions. Both cover the same ground, but
beginner-friendly sessions put more emphasis on ensuring that all students
can do the easier exercises before discussing the more challenging ones.

The following diagram gives the dependencies between the chapters of the
book. A dashed arrow indicates a weak dependency, meaning that only some
of the exercises rely on the content of the indicated chapter.

This is a lot of material for an 11-week course. If more time is available,
as in universities with 14–15-week semesters, then using the extra time to pro-
ceed at a more leisurely pace would probably be better. If less time is availa-
ble, as in universities with 9-week quarters, then some of the material would
need to be cut. Here are some suggestions:

In Edinburgh, we omit Chap. 32
(Non-Regular Languages). Some
of the more advanced material in
some chapters is omitted or not
covered in full detail, examples
being structural induction and
mutual recursion. We add a
lecture near the end covering the
relationship between propositions
and types, based on the article
7 “Propositions as Types” by
Philip Wadler in Communications
of the ACM 58(12):75–84 (2015).

http://dx.doi.org/10.1007/978-3-030-76908-6_32
http://dx.doi.org/https://doi.org/10.1145/2699407
http://dx.doi.org/https://doi.org/10.1145/2699407
http://dx.doi.org/https://doi.org/10.1145/2699407

VIII Preface

Haskell: Nothing else depends on Chaps. 25 (Search in Trees) or 26 (Combi-
natorial Algorithms). Only a small part of Chap. 24 (Type Classes) builds
on Chap. 21 (Data Abstraction). Nothing else depends on Chap. 30 (Input/
Output and Monads) but students need to be exposed to at least the first
part of this chapter.

Logic: Nothing else depends on Chaps. 18 (Relations and Quantifiers), 22
(Efficient CNF Conversion), or 23 (Counting Satisfying Valuations). Pro-
vided the explanation of CNF at the start of Chap. 17 (Karnaugh Maps)
is retained, the rest of the chapter can be omitted. Nothing else depends on
Chap. 19 (Checking Satisfiability) but it is a natural complement to the ma-
terial in Chap. 14 (Sequent Calculus) and demonstrates logic in action.

Automata: Chap. 32 (Non-Regular Languages) can safely be omitted. A
course that covers only Haskell and logic, omitting finite automata, would
also be possible.

Using this Book for Self-Study

The comments above on using this book for teaching also apply to profes-
sionals or non-specialists who wish to use part or all of this book for self-
study. The exercises at the ends of each chapter are essential when no instruc-
tor’s guidance is available.

The chapters on logic and automata depend on the chapters on Haskell in
important ways. But most dependencies in the other direction are weak, only
relating to a few exercises, meaning that the book could be used by readers
who wish to learn Haskell but are unfamiliar with and/or are less interested in
logic and automata. An exception is that an important series of examples in
Chap. 16 (Expression Trees) depends on the basic material on logic in Chap. 4
(Venn Diagrams and Logical Connectives), but this material is easy to learn if
it is not already familiar.

Supplemental Resources

The website 7 https://www.intro-to-computation.com/ provides resources
that will be useful to instructors and students. These include: all of the
code in the book, organised by chapters; links to online information about
Haskell, including installation instructions; and other links that relate to the
content of the book. Solutions to the exercises are available to instructors at
7 https://link.springer.com/book/978-3-030-76907-9.

Marginal notes on almost every page provide pointers to additional mate-
rial—mostly articles in Wikipedia—for readers who want to go beyond what
is presented. These include information about the people who were originally
responsible for many of the concepts presented, giving a human face to the
technical material.

Acknowledgements

This book was written by the first author based on material developed for the
course Introduction to Computation by all of the authors. The treatment of
logic and automata draws on a long history of teaching related material in
Edinburgh.

http://dx.doi.org/10.1007/978-3-030-76908-6_25
http://dx.doi.org/10.1007/978-3-030-76908-6_26
http://dx.doi.org/10.1007/978-3-030-76908-6_24
http://dx.doi.org/10.1007/978-3-030-76908-6_21
http://dx.doi.org/10.1007/978-3-030-76908-6_30
http://dx.doi.org/10.1007/978-3-030-76908-6_18
http://dx.doi.org/10.1007/978-3-030-76908-6_22
http://dx.doi.org/10.1007/978-3-030-76908-6_23
http://dx.doi.org/10.1007/978-3-030-76908-6_17
http://dx.doi.org/10.1007/978-3-030-76908-6_19
http://dx.doi.org/10.1007/978-3-030-76908-6_14
http://dx.doi.org/10.1007/978-3-030-76908-6_32
http://dx.doi.org/10.1007/978-3-030-76908-6_16
http://dx.doi.org/10.1007/978-3-030-76908-6_4
https://www.intro-to-computation.com/
https://link.springer.com/book/978-3-030-76907-9

IX
Preface

Material in some chapters is partly based on notes on basic set theory pro-
duced by John Longley, and lecture notes and tutorials from earlier courses
on Computation and Logic developed and delivered by Stuart Anderson,
Mary Cryan, Vivek Gore, Martin Grohe, Don Sannella, Rahul Santhanam,
Alex Simpson, Ian Stark, and Colin Stirling. The techniques for counting sat-
isfying valuations of a 2-CNF formula described in Chap. 23 were developed
by the second author and have not been previously published. Exercise 25.6
was contributed by Moni Sannella.

We are grateful to the teaching assistants who have contributed to running
Introduction to Computation and its predecessors over many years, and to the
material on which this book is based:

Functional Programming: Chris Banks, Roger Burroughes, Ezra
Cooper, Stefan Fehrenbach, Willem Heijltjes, DeLesley Hutchins, Laura
Hutchins-Korte, Karoliina Lehtinen, Orestis Melkonian, Phil Scott, Irene
Vlassi Pandi, Jeremy Yallop, and Dee Yum.

Logic and Automata: Paolo Besana, Claudia Chirita, Dave Cochrane,
Thomas French, Mark McConville, Areti Manataki, and Gavin Peng.

Thanks to Claudia Chirita for her assistance with the hard work of moving
the course online during the Covid-19 pandemic in 2020/2021, and help with

 Thanks from Don Sannella to the staff of Station 1A in St Josef-Hos-
pital in Bonn-Beuel who helped him recover from Covid-19 in early February
2021; some of Chap. 32 was written there. Deep thanks from Don to Moni
for her love and support; this book is dedicated to her.

Thanks to our colleagues Julian Bradfield, Stephen Gilmore, and Perd-
ita Stevens for detailed comments and suggestions, and to the students in In-
troduction to Computation in 2020/2021 who provided comments and correc-
tions on the first draft, including: Ojaswee Bajracharya, Talha Cheema, Pablo
Denis González de Vega, Ruxandra Icleanu, Ignas Kleveckas, Mateusz Li-
chota, Guifu Liu, Peter Marks, Max Smith, Alexander Strasser, Massimiliano
Tamborski, Yuto Takano, and Amy Yin. Plus Hisham Almalki, Haofei Chen,
Ol Rushton, and Howard Yates from 2021/2022. Thanks to Matthew Mars-
land for help with the Edinburgh Haskell Prelude, to Miguel Lerma for an
example that was useful in the solution to Exercise 21.7(c), to Marijn in the
StackExchange forum for help with and to the publisher’s anony-
mous reviewers for their helpful comments.

Image credits:

5 Grain of sand (page 2): 7 https://wellcomecollection.org/works/e2ptvq7g
(single grain of sand, SEM). Credit: Stefan Eberhard. License: Creative
Commons Attribution-NonCommercial 4.0 International (CC BY-NC
4.0).

5 Square of opposition (page 74): 7 https://commons.wikimedia.org/wiki/
File:Square_of_opposition,_set_diagrams.svg. Credit: Tilman Piesk. Li-
cense: Public domain.

5 Karnaugh map in a plane and on a torus (page 166): adapted from
7 https://commons.wikimedia.org/wiki/File:Karnaugh6.gif. Credit:
Jochen Burghardt. License: Creative Commons Attribution-Share Alike
3.0 Unported (CC BY-SA 3.0).

5 Global and local maxima (page 267): 7 https://commons.wikimedia.org/
wiki/File:Hill_climb.png and 7 https://commons.wikimedia.org/wiki/
File:Local_maximum.png. Credit: Headlessplatter at English Wikipedia.
License: Public domain.

http://dx.doi.org/10.1007/978-3-030-76908-6_23
http://dx.doi.org/10.1007/978-3-030-76908-6_25
http://dx.doi.org/10.1007/978-3-030-76908-6_32
http://dx.doi.org/10.1007/978-3-030-76908-6_27
https://wellcomecollection.org/works/e2ptvq7g
https://commons.wikimedia.org/wiki/File:Square_of_opposition,_set_diagrams.svg
https://commons.wikimedia.org/wiki/File:Square_of_opposition,_set_diagrams.svg
https://commons.wikimedia.org/wiki/File:Karnaugh6.gif
https://commons.wikimedia.org/wiki/File:Hill_climb.png
https://commons.wikimedia.org/wiki/File:Hill_climb.png
https://commons.wikimedia.org/wiki/File:Local_maximum.png
https://commons.wikimedia.org/wiki/File:Local_maximum.png

X Preface

Haskell

Haskell is a purely functional programming language—meaning that func-
tions have no side effects—with a strong static type system featuring poly-
morphic types and type classes, and lazy evaluation. A mechanism based on
monads (Chap. 30) is used to separate code with side-effects from pure fun-
ctions. Haskell is used in academia and industry and is supported by a large
and active community of developers and users. This book uses the Haskell
2010 language and the Glasgow Haskell Compiler (GHC), which is freely
available for most platforms and is the de facto standard implementation of
the language.

To get started with Haskell, download the Haskell Platform—GHC to-
gether with the main Haskell library modules and tools—from 7 https://
www.haskell.org/platform/, and follow the installation instructions. Once that
is done, install QuickCheck by running the commands

To start GHCi, the interactive version of GHC, run the command ghci:

To exit, type :quit, which can be abbreviated :q.

Although you can experiment with Haskell programming by typing defi-
nitions into GHCi, it’s better to type your program—known as a script, with
extension .hs—into a text editor, save it and then load it into GHCi using
:load, which can be abbreviated :l, like so:

When you subsequently change your program in the text editor, you need to
save it and then reload it into GHCi using :reload (:r). Haskell remembers
the file name so there is no need to repeat it.

In this book, expressions typed into GHCi will be preceded by a Haskell-
style prompt >:

to distinguish them from code in a file:

By default, Haskell’s prompt starts out as Prelude> and changes

when scripts are loaded and modules are imported. Use the command
:set prompt "> " if you want to use the simpler prompt >, matching the
examples in this book.

Haskell was originally designed in
1990 by a committee as a
standard non-strict purely
functional programming
language. (Lazy evaluation is a
form of non-strict evaluation.)
Prominent members of the
Haskell committee included Paul
Hudak, John Hughes, Simon
Peyton Jones, and Philip Wadler.
See 7 https://en.wikipedia.org/
wiki/Haskell_(programming_
language) and 7 https://www.
haskell.org/.

Type these into a command-line
terminal window or “shell”, not
into a Haskell interactive session!

http://dx.doi.org/10.1007/978-3-030-76908-6_30
https://www.haskell.org/platform/
https://www.haskell.org/platform/
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://www.haskell.org/
https://www.haskell.org/

XI

Contents

1 Sets . 1
Things and Equality of Things . 2
Sets, Set Membership and Set Equality . 2
Subset . 2
Set Comprehensions . 3
Operations on Sets . 3
Ordered Pairs and Cartesian Product . 4
Relations. 4
Functions . 5
Exercises . 6

2 Types . 7
Sets Versus Types . 8
Types in Haskell . 8
Polymorphic Types . 9
Equality Testing, Eq and Num . 9
Defining New Types . 10
Types Are Your Friend! . 11
Exercises . 12

3 Simple Computations . 15
Arithmetic Expressions . 16
Int and Float . 16
Function Definitions . 17
Case Analysis . 18
Defining Functions by Cases . 19
Dependencies and Scope . 19
Indentation and Layout . 21
Exercises . 21

4 Venn Diagrams and Logical Connectives . 23
Visualising Sets . 24
Visualising Operations on Sets . 26
Logical Connectives . 27
Truth Tables . 28
Exercises . 30

5 Lists and Comprehensions . 33
Lists . 34
Functions on Lists . 34
Strings . 36
Tuples . 37
List Comprehensions . 38
Enumeration Expressions . 39
Lists and Sets . 40
Exercises . 40

6 Features and Predicates . 43
Logic . 44
Our Universe of Discourse . 44
Representing the Universe . 45
Things Having More Complex Properties . 47

XII Contents

Checking Which Statements Hold . 48
Sequents . 49
Exercises . 50

7 Testing Your Programs . 51
Making Mistakes . 52
Finding Mistakes Using Testing . 53
Testing Multiple Versions Against Each Other . 54
Property-Based Testing . 54
Automated Testing Using QuickCheck . 55
Conditional Tests . 56
Test Case Generation . 57
Testing Polymorphic Properties . 58
Exercises . 58

8 Patterns of Reasoning . 61
Syllogisms . 62
Relationships Between Predicates . 62
A Deductive Argument . 63
Negated Predicates. 65
Contraposition and Double Negation . 66
More Rules . 67
Exercises . 68

9 More Patterns of Reasoning . 71
Denying the Conclusion . 72
Venn Diagrams with Inhabited Regions . 73
Contraposition Again . 74
Checking Syllogisms . 74
Finding Counterexamples . 76
Symbolic Proofs of Soundness . 77
Deriving All of the Sound Syllogisms . 78
Exercises . 79

10 Lists and Recursion. 81
Building Lists . 82
Recursive Function Definitions . 82
More Recursive Function Definitions . 84
Sorting a List . 85
Recursion Versus List Comprehension . 87
Exercises . 88

11 More Fun with Recursion . 89
Counting . 90
Infinite Lists and Lazy Evaluation . 91
Zip and Search . 92
Select, Take and Drop . 94
Natural Numbers . 94
Recursion and Induction . 95
Exercises . 97

12 Higher-Order Functions . 99
Patterns of Computation . 100
Map . 100
Filter . 102
Fold . 103

XIII
Contents

foldr and foldl . 105
Combining map, filter and foldr/foldl . 106
Curried Types and Partial Application . 107
Exercises . 108

13 Higher and Higher . 111
Lambda Expressions . 112
Function Composition . 113
The Function Application Operator $. 114
Currying and Uncurrying Functions . 114
Bindings and Lambda Expressions . 115
Exercises . 116

14 Sequent Calculus . 119
Combining Predicates . 120
The “Immediate” Rule . 121
De Morgan’s Laws . 121
Sequents Again . 122
Adding Antecedents and Succedents . 123
Sequent Calculus . 126
Proofs in Sequent Calculus . 126
Exercises . 129

15 Algebraic Data Types . 131
More Types . 132
Booleans . 132
Seasons . 133
Shapes . 134
Tuples . 136
Lists . 137
Optional Values . 138
Disjoint Union of Two Types . 139
Exercises . 140

16 Expression Trees . 143
Trees . 144
Arithmetic Expressions . 144
Evaluating Arithmetic Expressions . 146
Arithmetic Expressions with Infix Constructors . 147
Propositions . 147
Evaluating Propositions. 149
Satisfiability of Propositions . 150
Structural Induction . 152
Mutual Recursion. 154
Exercises . 156

17 Karnaugh Maps . 161
Simplifying Logical Expressions . 162
Conjunctive Normal form and Disjunctive Normal form. 162
Karnaugh Maps . 163
Converting Logical Expressions to DNF . 165
Converting Logical Expressions to CNF . 167
Exercises . 168

18 Relations and Quantifiers . 169
Expressing Logical Statements . 170

XIV Contents

Quantifiers . 170
Relations. 172
Another Universe . 173
Dependencies. 174
Exercises . 175

19 Checking Satisfiability . 177
Satisfiability . 178
Representing CNF . 178
The DPLL Algorithm: Idea . 180
The DPLL Algorithm: Implementation . 182
Application: Sudoku . 185
Exercises . 187

20 Data Representation . 189
Four Different Representations of Sets . 190
Rates of Growth: Big-O Notation . 190
Representing Sets as Lists . 193
Representing Sets as Ordered Lists Without Duplicates . 194
Representing Sets as Ordered Trees . 195
Representing Sets as Balanced Trees . 199
Comparison . 202
Polymorphic Sets . 202
Exercises . 203

21 Data Abstraction . 205
Modular Design . 206
Sets as Unordered Lists . 207
Sets as Ordered Lists Without Duplicates . 208
Sets as Ordered Trees . 210
Sets as AVL Trees . 211
Abstraction Barriers . 212
Abstraction Barriers: SetAsOrderedTree and SetAsAVLTree . . . 212
Abstraction Barriers: SetAsList and SetAsOrderedList 214
Testing . 216
Exercises . 217

22 Efficient CNF Conversion . 219
CNF Revisited . 220
Implication and Bi-implication . 220
Boolean Algebra . 222
Logical Circuits . 223
The Tseytin Transformation . 225
Tseytin on Expressions . 227
Exercises . 228

23 Counting Satisfying Valuations . 231
2-SAT . 232
Implication and Order . 232
The Arrow Rule . 234
Complementary Literals . 238
Implication Diagrams with Cycles . 241
Exercises . 245

XV
Contents

24 Type Classes . 247
Bundling Types with Functions . 248
Declaring Instances of Type Classes . 248
Defining Type Classes . 250
Numeric Type Classes . 253
Functors . 254
Type Classes are Syntactic Sugar . 256
Exercises . 257

25 Search in Trees . 259
Representing a Search Space. 260
Trees, Again . 260
Depth-First Search . 261
Breadth-First Search . 263
Best-First Search . 265
Exercises . 267

26 Combinatorial Algorithms . 269
The Combinatorial Explosion. 270
Repetitions in a List . 270
Sublists . 271
Cartesian Product . 272
Permutations of a List . 273
Choosing k Elements from a List . 275
Partitions of a Number . 276
Making Change . 277
Eight Queens Problem . 278
Exercises . 280

27 Finite Automata . 281
Models of Computation . 282
States, Input and Transitions . 282
Some Examples . 285
Deterministic Finite Automata . 286
Some More Examples . 287
How to Build a DFA . 288
Black Hole Convention . 290
Exercises . 292

28 Deterministic Finite Automata . 293
Diagrams and Greek Letters . 294
Deterministic Finite Automata, Formally . 294
Complement DFA . 297
Product DFA . 298
Sum DFA . 301
Exercises . 302

29 Non-deterministic Finite Automata . 303
Choices, Choices . 304
Comparing a DFA with an NFA . 304
Some More Examples . 307
Non-deterministic Finite Automata, Formally . 308
NFAs in Haskell . 309
Converting an NFA to a DFA . 311

XVI Contents

ε-NFAs . 316
Concatenation of ε-NFAs . 320
Exercises . 321

30 Input/Output and Monads . 323
Interacting with the Real World . 324
Commands . 324
Performing Commands . 325
Commands That Return a Value . 326
do Notation . 329
Monads . 330
Lists as a Monad . 331
Parsers as a Monad . 334
Exercises . 338

31 Regular Expressions . 339
Describing Regular Languages . 340
Examples . 340
Simplifying Regular Expressions . 341
Regular Expressions Describe Regular Languages . 342
Regular Expressions Describe All Regular Languages . 346
Exercises . 348

32 Non-Regular Languages . 351
Boundaries of Expressibility . 352
Accepting Infinite Languages Using a Finite Number of States 352
A Non-Regular Language . 353
The Pumping Lemma . 354
Proving That a Language Is Not Regular . 354
Exercises . 355

Supplementary Information
Appendix: The Haskell Ecosystem . 358
Index . 361

1 1

Sets
Contents

Things and Equality of Things – 2

Sets, Set Membership and Set Equality – 2

Subset – 2

Set Comprehensions – 3

Operations on Sets – 3

Ordered Pairs and Cartesian Product – 4

Relations – 4

Functions – 5

Exercises – 6

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_1

1

2 Chapter 1 · Sets

Things and Equality of Things

The world is full of things: people, buildings, countries, songs, zebras, grains of
sand, colours, noodles, words, numbers, …

An important aspect of things is that we’re able to tell the difference between
one thing and another. Said another way, we can tell when two things are the
same, or equal. Obviously, it’s easy to tell the difference between a person and
a noodle. You’d probably find it difficult to tell the difference between two
zebras, but zebras can tell the difference. If two things a and b are equal, we
write a = b; if they’re different then we write a �= b.

Sets, Set Membership and Set Equality

One kind of thing is a collection of other things, known as a set. Examples
are the set of people in your class, the set of bus stops in Edinburgh, and the
set of negative integers. One way of describing a set is by writing down a list
of the things that it contains—its elements—surrounded by curly brackets, so
the set of positive odd integers less than 10 is {1, 3, 5, 7, 9}. Some sets that are
commonly used in Mathematics are infinite, like the set of natural numbers
N = {0, 1, 2, 3, . . .} and the set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .},
so listing all of their elements explicitly is impossible.

A thing is either in a set (we write that using the set membership symbol ∈,
like so: 3 ∈ {1, 3, 5, 7, 9}) or it isn’t (16 �∈ {1, 3, 5, 7, 9}). Two sets are equal ifx ∈ A is pronounced “x is in A” or

“x is a member of A”. they have the same elements. The order doesn’t matter, so 1, ,1 :

is a grain of sand. these sets are equal because both have 1 and as elements, and nothing
else. A thing can’t be in a set more than once, so we can think of sets as
unordered collections of things without duplicates. The empty set {} with no
elements, usually written ∅, is also a set. A set like {7} with only one element
is called a singleton; note that the set {7} is different from the number 7 that it
contains. Sets can contain an infinite number of elements, like N or the set ofThere are different “sizes” of infinity,

see 7 https://en.wikipedia.org/wiki/
Cardinality—for instance, the
infinite set of real numbers is bigger
than the infinite set Z, which is the
same size as N—but we won’t need to
worry about the sizes of infinite sets.

odd integers. And, since sets are things, sets can contain sets as elements, like
this: , 1 , Edinburgh, yellow , . The size or cardinality |A| of a finite
setA is the number of elements it contains, for example, |{1, 3, 5, 7, 9}| = 5 and
|∅| = 0.

Subset

Suppose that one setB is “bigger” than another setA in the sense thatB contains
all ofA’s elements, andmaybemore. Then we say thatA is a subset ofB, written
A ⊆ B. In symbols:You might see the symbol ⊂ used

elsewhere for subset. We use A ⊆ B
to remind ourselves that A and B
might actually be equal, and A ⊂ B
to mean A ⊆ B but A �= B.

A ⊆ B if x ∈ A implies x ∈ B

Here are some examples of the use of subset and set membership:

{a, b, c} ⊆ {s, b, a, e, g, i, c} {a, b, j} �⊆ {s, b, a, e, g, i, c}
{s, b, a, e, g, i, c} �⊆ {a, b, c} {s, b, a, e, g, i, c} ⊆ {s, b, a, e, g, i, c}
{a, {a}} ⊆ {a, b, {a}} {{a}} ⊆ {a, b, {a}}
∅ ⊆ {a} ∅ �∈ {a}
{a} �⊆ {{a}} {a} ∈ {{a}}

https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Cardinality

Operations on Sets
3 1

To show that A = B, you need to show that x ∈ A if and only if x ∈ B. Set equality can be tricky. For
instance, consider the set
Collatz = {n ∈ N | n is a
counterexample to the Collatz
conjecture}, see 7 https://en.
wikipedia.org/wiki/
Collatz_conjecture. As of 2021,
nobody knows if Collatz = ∅ or
Collatz �= ∅. But one of these
statements is true and the other is
false—we just don’t know yet which
is which!

Alternatively, you can use the fact that if A ⊆ B and B ⊆ A then A = B. This
allows you to prove separately that A ⊆ B (x ∈ A implies x ∈ B) and that
B ⊆ A (x ∈ B implies x ∈ A). That’s sometimes easier than giving a single
proof of x ∈ A if and only if x ∈ B.

Set Comprehensions

One way of specifying a set is to list all of its elements, as above. That would
take forever, for an infinite set like N!

Another way is to use set comprehension notation, selecting the elements of
another set that satisfy a given property. For example:

| is pronounced “such that”, so
{p ∈ Students | p has red hair} is
pronounced “the set of p in Students
such that p has red hair”.

{p ∈ Students | p has red hair}
{x ∈ N | x is divisible by 3 and x > 173}
{c ∈ Cities | (c is in Africa and c is south of the equator) or

(c is in Asia and c is west of Mumbai) or
(c’s name begins with Z) or
(c = Edinburgh or c = Buenos Aires or c = Seattle)}

The name of the variable (p ∈ Students, x ∈ N, etc.) doesn’t matter: {p ∈
Students | p has red hair} and {s ∈ Students | s has red hair} are the same set.
As the last example above shows, the property can be as complicated as you
want, provided it’s clear whether an element satisfies it or not.

For now, we’ll allow the property to be expressed in English, as in the exam-
ples above, but later we’ll replace this with logical notation. The problem with
English is that it’s easy to express properties that aren’t precise enough to prop-
erly define a set. For example, consider TastyFoods = {b ∈ Foods | b is tasty}.
Is Brussel sprouts ∈ TastyFoods or not?

Operations on Sets

Another way of forming sets is to combine existing sets using operations on
sets.

The union A∪B of two sets A and B is the set that contains all the elements
of A as well as all the elements of B. For example,

{p ∈ Students | p has red hair} ∪ {p ∈ Students | p has brown eyes}
is the subset of Students having either red hair or brown eyes, or both. The
intersection A∩B of two sets A and B is the set that contains all the things that
are elements of both A and B. For example,

{p ∈ Students | p has red hair} ∩ {s ∈ Students | s has brown eyes}
is the subset of Students having both red hair and brown eyes.

Both union and intersection are symmetric, or commutative: A∪B = B∪A
and A ∩ B = B ∩A. They are also associative: (A ∪ B) ∪C = A ∪ (B ∪C) and
(A ∩ B) ∩ C = A ∩ (B ∩ C).

The difference A − B of two sets A and B is the set that contains all the Set difference is often written A \ B.
elements of A that are not in B. That is, we subtract from A all of the elements
of B. For example:

({p ∈ Students | p has red hair} ∪ {p ∈ Students | p has brown eyes})
−({p ∈ Students | p has red hair} ∩ {p ∈ Students | p has brown eyes})

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

1

4 Chapter 1 · Sets

is the subset of Students having either red hair or brown eyes, but not both.
Obviously, A − B �= B − A in general.

The complement of a set A is the set Ā of everything that is not in A.
Complement only makes sense with respect to some universe of elements under
consideration, so the universe always needs to be made clear, implicitly or
explicitly. For instance, with respect to the universe N of natural numbers, {0}
is the set of strictly positive natural numbers. With respect to the universe Z of
integers, {0} also includes negative numbers.

The set ℘(A) of all subsets of a setA is called the powerset ofA. In symbols,The name “powerset” comes from
the fact that |℘(A)| = 2|A|, i.e. “2
raised to the power of |A|”.

x ∈ ℘(A) if and only if x ⊆ A. For example, ℘({1, 2}) = {∅, {1}, {2}, {1, 2}}.
Note that ℘(A) will always include the set A itself as well as the empty set ∅.

Ordered Pairs and Cartesian Product

Two things x and y can be combined to form an ordered pair, written (x, y).
In contrast to sets, order matters: (x, y) = (x′, y′) if and only if x = x′
and y = y′, so (x, y) and (y, x) are different unless x = y. An example of
a pair is (Simon, 20), where the first component is a person’s name and the
second component is a number, perhaps their age. Joining the components
of the pair to make a single thing means that the pair can represent an
association between the person’s name and their age. The same idea generalises
to ordered triples, quadruples, etc. which are written using the same notation,
with (Introduction to Computation, 1, Sets,4) being a possible representation
of this page in Chap. 1 of this book.

The Cartesian product of two sets A and B is the set A × B of all orderedThe Cartesian product is named after
the French philospher,
mathematician, and scientist René
Descartes (1596−1650), see 7 https://
en.wikipedia.org/wiki/Ren%C3
%A9_Descartes. Cartesian
coordinates for points in the plane
are ordered pairs in R × R, where R

is the set of real numbers.

pairs (x, y) with x ∈ A and y ∈ B. For example, {Fiona,Piotr} × {19, 21} =
{(Fiona, 19), (Fiona, 21), (Piotr, 19), (Piotr, 21)}. Notice thatA×B = ∅ if and
only ifA = ∅ orB = ∅, and |A×B|= |A|×|B|. The generalisation to the n-fold
Cartesian product of n sets, producing a set of ordered n-tuples, is obvious.

Relations

A set of ordered pairs can be regarded as a relation in which the first component
of each pair stands in some relationship to the second component of that pair.
For example, the “less than” relation < on the set N of natural numbers is a
subset of N × N that contains the pairs (0, 1) and (6, 15), because 0 < 1 and
6 < 15, but doesn’t contain the pair (10, 3) because 10 �< 3.

Set comprehension notation is a convenient way of specifying relations, for
example:

{(p, q) ∈ Students × Students | p and q are taking the same courses}
{(x, y) ∈ Z × Z | y is divisible by x}
{(p, n) ∈ Students × N | p is taking at least n courses}

All of these are binary relations: sets of pairs. Relations between more than two
items can be represented using sets of ordered n-tuples, for example:

{(p, q, n) ∈ Students × Students × N | p and q have n courses in common}
{(a, b, n, c) ∈ Places × Places × Distances × Places

| there is a route from a to b of length n that goes through c}

https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes

Functions
5 1

Functions

Some relations f ⊆ A×B have the property that the first component uniquely
determines the second component: if (x, y) ∈ f and (x, y′) ∈ f then y = y′.
Such a relation is called a function. We normally write f : A → B instead of
f ⊆ A × B to emphasise the function’s “direction”. Given x ∈ A, the notation
f (x) is used for the value in B such that (x, f (x)) ∈ f . If there is such a value for f (x) is pronounced “f of x”.
every x ∈ A then f is called a total function; otherwise, it is a partial function.

None of the examples of relations given above are functions, for example,
< ⊆ N × N isn’t a function because 0 < 1 and 0 < 2 (and 0 < n for many other
n ∈ N). Here are some examples of functions:

Notice that it is not required that
f (x) uniquely determines x, for
example, the smallest prime greater
than 8 is 11, which is the same as the
smallest prime greater than 9.

{(m, n) ∈ N × N | n = m + 1}
{(n, p) ∈ N × N | p is the smallest prime such that p > n}
{(p, n) ∈ Students × N | p is taking n courses}
{(p, n) ∈ Students × N | p got a mark of n in Advanced Paleontology}

The first three are total functions, but the last one is partial unless all students
have taken Advanced Paleontology.

The composition of two functions f : B → C and g : A → B is the function
f ◦g : A → C defined by (f ◦g)(x) = f (g(x)), applying f to the result produced
by g. Here’s a diagram:

x∈

A

g(x)∈
B

∈f (g(x))

C
g f

f ◦g

Notice that the order of f and g in
the composition f ◦ g is the same as it
is in the expression f (g(x)), but the
opposite of the order of application
“first apply g to x, then apply f to
the result”.

For any set A, the identity function idA : A → A is defined by idA(x) = x
for every x ∈ A. The identity function is the identity element for composition:
for every function f : A → B, f ◦ idA = f = idB ◦ f . Furthermore, function
composition is associative: for all functions f : A → B, g : B → C and
h : C → D, (h ◦ g) ◦ f = h ◦ (g ◦ f). But it’s not commutative: see Exercise 12
for a counterexample.

A function f : A1 × · · · × An → B associates an n-tuple (a1, . . . , an) ∈
A1 ×· · ·×An with a uniquely determined f (a1, . . . , an) ∈ B. It can be regarded
as a binary relation f ⊆ (A1 × · · · × An) × B, or equivalently as an (n + 1)-
ary relation where the first n components of any (a1, . . . , an, b) ∈ f uniquely
determine the last component. Another example of a partial function is the
natural logarithm {(a, b) ∈ R × R | a = eb}; this isn’t a total function because
for any a ≤ 0 there is no b such that a = eb.

Any subset X of a set A corresponds to a function 1X : A → {0, 1} such 1X : A → {0, 1} is called the
characteristic function or indicator
function of X , see 7 https://en.
wikipedia.org/wiki/
Indicator_function. Here, 0 denotes
false (i.e. the value is not in X) and 1
denotes true (i.e. the value is in X).

that, for any a ∈ A, 1X (a) says whether or not a ∈ X :

1X (a) =
{
1, if a ∈ X

0, if a �∈ X

Using this correspondence, a relation R ⊆ A × B can be defined by a function
1R : A × B → {0, 1}, where

1R(a, b) =
{
1, if (a, b) ∈ R

0, if (a, b) �∈ R

As you will see, this is the usual way of defining relations in Haskell.

https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Indicator_function

1

6 Chapter 1 · Sets

You will see many examples of functions in the remaining chapters of this
book. Most of them will be functions defined in Haskell, meaning that there
will an algorithmic description of the way that f (x) is computed from x. But
there are functions that can’t be defined in Haskell or any other programming
language. A famous one is the function halts : Programs × Inputs → {0, 1}The question of whether the function

halts can be computed
algorithmically is called the Halting
Problem, see 7 https://en.wikipedia.
org/wiki/Halting_problem. The
British mathematician and logician
Alan Turing (1912−1954), see
7 https://en.wikipedia.org/wiki/
Alan_Turing showed that such an
algorithm cannot exist.

which, for every program p (say, in Haskell) and input i for p, produces 1 if p
eventually halts when given input i and produces 0 otherwise.

Exercises

1. How many elements does the following set have?

{{3}, {3, 3}, {3, 3, 3}}
2. Show that A ⊆ B and B ⊆ A implies A = B.
3. Show that if A ⊆ B and B ⊆ C then A ⊆ C.
4. Show that A − B = B − A is false by finding a counterexample. Find

examples of A,B for which A − B = B − A. Is set difference associative?
5. Show that:

(a) intersection distributes over union: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(b) union distributes over intersection: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Does union or intersection distribute over set difference?
6. Show that ¯̄A = A.
7. Show that the following equalities (so-called De Morgan’s laws) hold:De Morgan’s laws arise in logic—see

Chap. 14 for details—as well as set
theory. (a) A ∪ B = Ā ∩ B̄

(b) A ∩ B = Ā ∪ B̄

Can you think of a similar law for set difference?
8. Show that ℘(A∩B) = ℘(A) ∩ ℘(B). What about union: does ℘(A∪B) =

℘(A) ∪ ℘(B) hold in general or not?
9. Carelessness with set comprehension notation is dangerous, as shown by

Russell’s paradox: Let R = {x | x �∈ x}, and then show that R ∈ R if andSee 7 https://en.wikipedia.org/wiki/
Russell’s_paradox. Bertrand Russell
(1872−1970) was a British
philosopher, logician,
mathematician, political activist, and
Nobel laureate.

only if R �∈ R. That is, the definition of R is meaningless! The mistake with
the definition of R is that x isn’t specified as being an element of an existing
set.

10. Show that |℘(A)| = 2|A|, for every finite set A.
11. Show that:

(a) A ⊆ A′ and B ⊆ B′ implies A × B ⊆ A′ × B′
(b) (A ∩ B) × (C ∩ D) = (A × C) ∩ (B × D)

Use a counterexample to show that (A∪B)× (C ∪D) �= (A×C)∪ (B×D).
12. Let

f : N → N = {(m, n) ∈ N × N | n = m + 1}
g : N → N = {(n, p) ∈ N × N | p is the smallest prime such that p > n}

What are the functions f ◦ g : N → N and g ◦ f : N → N?

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Russell's_paradox
https://en.wikipedia.org/wiki/Russell's_paradox

7 2

Types

Contents

Sets Versus Types – 8

Types in Haskell – 8

Polymorphic Types – 9

Equality Testing, Eq and Num – 9

Defining New Types – 10

Types Are Your Friend! – 11

Exercises – 12

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_2

2

8 Chapter 2 · Types

Sets Versus Types

A set is a collection of things. In programming, a type is also a collection ofTypes are used in logic and
Mathematics with a similar meaning
but without the computational
constraints imposed by their use in
programming, see 7 https://en.
wikipedia.org/wiki/Type_theory.

things. The difference is that a type is a collection of things that the programmer
has decided are in some way related or belong together in some sense that may
depend on the situation at hand. A few examples are:

• Weekdays (Monday, Tuesday, … , Sunday)
• Dates (5 Sep 1993, 13 Dec 1996, 28 Jun 1963, …)
• People (Julius Caesar, Ludwig van Beethoven, Elvis Presley, …)
• Integers (… , −2, −1, 0, 1, 2, …)
• Colours (red, orange, yellow, …)

The reason for distinguishing types from sets of unrelated things is that they
are useful to classify relationships between kinds of things, including computa-
tions that produce one kind of thing from another kind of thing. For example,
each date falls on one of the days of the week. The association can be computed
by a Haskell function that takes a date and produces a day of the week. Such aSee 7 https://en.wikipedia.org/wiki/

Zeller’s_congruence for one way of
defining this function.

function, which might be called day, would have type Date -> Weekday. That
type classifies all of the functions that take a date as input and produce a day
of the week as output. Another such function is the one that takes a date and
always produces Friday.

Types in Haskell

Types are an important element of the Haskell programming language. In
Haskell, we compute with values, and every value has a type. This typing rela-
tionship can be expressed using the notation v :: t. So, for example, 17 :: Intv :: t is pronounced “v has type t”.
where Int is Haskell’s built-in type of integers.

When we define things in Haskell, we normally declare their types. For
example, if we want to tell Haskell that x is an integer and it has a value of
20 − 3, we write:

x :: Int
x = 20 - 3

where the type signature on the first line declares the type of the value on the
second line. The type signature isn’t compulsory—Haskell will almost always
be able to figure out types on its own, using type inference—but it’s useful
documentation that makes programs easier to understand.

Some other built-in types are:

• Bool, the type of truth values False and True;Bool is named after George Boole
(1815−1864), see 7 https://en.
wikipedia.org/wiki/George_Boole,
and values of type Bool are called
Booleans.

• Float, single-precision floating-point numbers, with values like 3.14159
and 6.62607e-34 which is Haskell’s notation for 6.62607 × 10−34;

• Double, the type of double-precision floating-point numbers, for applica-
tions where more than 6−7 decimal digits of accuracy is required;

• Char, the type of characters, for example 'a', '3', '!' and ' ' (space); and
• String, the type of strings of characters, for example, "a" (a string contain-Don’t mix up single quotation marks

('), used for characters, and double
quotation marks ("), used for strings!
And notice that "a" :: String is
different from 'a' :: Char!

ing just one character), "this is a string" and "" (the empty string).

We will encounter other built-in types later. All type names in Haskell begin
with an upper case letter.

https://en.wikipedia.org/wiki/Type_theory
https://en.wikipedia.org/wiki/Type_theory
https://en.wikipedia.org/wiki/Zeller's_congruence
https://en.wikipedia.org/wiki/Zeller's_congruence
https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/George_Boole

Equality Testing, Eq and Num
9 2

Polymorphic Types

Some functions work on values of lots of different types. A very simple example
is the identity function id, which is defined so that applying id to a value returns
the same value. It works for values of any type: In Haskell, we write “f v” to apply a

function f to a value v. In many
other programming languages, this is
written f (v). Parentheses are used for
grouping in Haskell, and grouping
things that don’t need grouping is
allowed, so f (v) is okay too. So is
(f)v and ((f)((v))).

> id 3
3
> id "hello"
"hello"

This shows that id :: Int -> Int and id :: String -> String. It even works
for functions: id id returns id.

All of the types that we can write for id have the form t -> t. In Haskell,
we can give id a single polymorphic type that stands for all types of this form:
id :: a -> a, written using the type variable a, which stands for any type. All
of the other types for id are obtained by replacing a with a type. (Of course,
we need to replace both occurrences of a with the same type!) Type variables
always begin with a lower case letter.

Functions with polymorphic types are common in Haskell, and you will see Functions with polymorphic types
are called generics in some other
languages, including Java, see
7 https://en.wikipedia.org/wiki/
Generics_in_Java.

many examples later.

Equality Testing, Eq and Num

Twovalues of the same type can be compared using the equality testing operator
==. For example:

> 3 == 3
True
> "hello" == "goodbye"
False

Haskell allows you to test equality of the values of most types. But an exception
is values of function types, because testing equality of functions would involve
testing that equal results are produced for all possible input values. Since that’s
not possible for functions with infinite domains, Haskell refuses to try, even
for functions with finite domains. You’ll see later that function types aren’t the
only exception.

Polymorphic functions sometimes need to be restricted to be used only on
types for which equality testing is permitted. This situation arises when they
use equality testing, either directly (as part of the function definition) or indi-
rectly (because the function definition uses another function that has such a
restriction). The restriction is recorded in the function’s type by adding an Eq
requirement to the front of the type. The equality test == itself is such a function:
its type signature is This type is pronounced “a arrow a

arrow Bool, for any instance a of
Eq”. Notice the double arrow =>
between the requirement Eq a and
the rest of the type.

(==) :: Eq a => a -> a -> Bool

And ditto for inequality testing:

(/=) :: Eq a => a -> a -> Bool

These types for == and /= mean that a type error will arise when an attempt is
made to apply them to values of a type for which equality testing isn’t available.

https://en.wikipedia.org/wiki/Generics_in_Java
https://en.wikipedia.org/wiki/Generics_in_Java

2

10 Chapter 2 · Types

The same mechanism is used to deal with the fact that there are different
kinds of numbers in Haskell—Int, Float, Double, and others—all of which
support arithmetic operations like addition and multiplication. Addition has
the type signature:

(+) :: Num a => a -> a -> a

and it works for values of any numerical type:

> 3 + 7
10
> 8.5e2 + 17.37
867.37

The same goes for a function for squaring a number, which can be defined in
terms of multiplication, and has the type signature:

square :: Num a => a -> a

For example:

> square 3
9
> square 3.14
9.8596

But square 'w' would produce a type error.
Types that include Eq a => or Num a => are examples of the use of type classes,

an important feature of Haskell that will be explained in full detail in Chap. 24.

Defining New Types

We can define new types in Haskell. One very simple way is to enumerate the
values of the type, for example:

data Weekday = Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday

and then we have Monday :: Weekday, etc. The names of the values need to
begin with an upper case letter for reasons that will be explained later.

In fact, the built-in type Bool is defined this way:

data Bool = False | True

Types Are Your Friend!
11 2

Another way is to give a new name to an existing type or type expression,
for example:

Notice the difference between data
(used to define a new type) and type
(used to give a new name to an
existing type)!

type Distance = Float

Defining Distance as a synonym for Float—and other synonyms for Float,
like Velocity and Acceleration—might be useful for specifying the types of
functions that calculate the movement of objects, as documentation. Another
example:

type Curve = Float -> Float

This type could be used to represent curves in two-dimensional space, with
functions like

zero :: Curve -> Float

for computing the point at which a curve crosses the x-axis.
An example of a polymorphic type definition is the type of binary relations

over a given type This uses the idea of defining a
relation R ⊆ A × A via its
characteristic function
1R : A × A → {0, 1}, see page 5, with
Bool standing in for {0, 1}.

type Relation a = a -> a -> Bool

with values like

isPrefixOf :: Relation String

Use import Data.List to get access
to isPrefixOf and the other items in
that library module. Hoogle
(7 https://hoogle.haskell.org/) is a
good tool for exploring the contents
of Haskell’s library.

in Haskell’s Data.List library module, which checks whether or not one
string is the first part of another string. Since Relation a is a synonym for
a -> a -> Bool, this is the same as

isPrefixOf :: String -> String -> Bool

To use isPrefixOf to find out if s is a prefix of t, we write isPrefixOf s t.

The reason why the type of
isPrefixOf is written
String -> String -> Bool and not
String * String -> Bool, as in some
other programming languages, will
be explained later. For now, just note
that most functions in Haskell that
take multiple inputs have types like
this.

For instance:

> isPrefixOf "pre" "prefix"
True
> isPrefixOf "hello" "hell"
False

We will come to other ways of defining types later, as are required for types
like String.

Types Are Your Friend!

Types are useful for keeping things organised. Knowing a value’s type tells
us what kinds of computations can be performed with it. If we have a value
d :: Date, we can apply day to it to produce a value day d :: Weekday. Obvi-
ously, applying day to a value like True :: Bool would be meaningless, and a
mistake: truth values aren’t associated with days of the week. An algorithm for
calculating the day of the week that corresponds to a date wouldn’t produce any
useful result when applied to True, and in the worst case it might even cause
some kind of catastrophic failure.

Luckily, we know already from the type of True that it’s pointless to apply
day to it. We can use the type mismatch to avoid simple mistakes like this
one, and similar but much more subtle and complicated mistakes in our pro-
grams. For this reason, Haskell typechecks your code before running it. It will
refuse point-blank to run any program that fails the typecheck until you fix the
problem. In the case of

day True

https://hoogle.haskell.org/

2

12 Chapter 2 · Types

it will produce an error message like this:

program.hs:3:5: error:

• Couldn't match expected type ‘Date’ with actual type ‘Bool’
• In the first argument of ‘day’, namely ‘True’

In the expression: day True
In an equation for ‘it’: it = day True

Yikes! This is a little complicated, and some of the details might be difficult
to understand at this point, but the problem is clear: there is a type mismatch
between Date and Bool in the “argument” (that is, the input value) True of the
function day.

If Haskell’s typechecker reports a type error in your program, then there isPolymorphic types and the algorithm
used in Haskell and other languages
to check and infer polymorphic types
are due to British logician J. Roger
Hindley (1939−) and British
computer scientist and 1991 Turing
award winner Robin Milner
(1934−2010), see 7 https://en.
wikipedia.org/wiki/Hindley-
Milner_type_system.

something that you need to fix. The errormessagemight not lead you directly to
the source of the problem, but it reports an inconsistency that will be helpful in
tracking down your mistake. And, if it doesn’t report a type error, then certain
kinds of failure are guaranteed not to arise when your program is run. It will
definitely not crash due to an attempt to apply a function to a value of the
wrong type, but (for example) typechecking won’t detect potential division by
zero.

When you are writing Haskell programs and the typechecker signals a type
error, you may regard its complaint as an irritating obstacle that is interfering

NASA lost a spacecraft at the end of
its 461-million-mile flight to Mars
because of an imperial/metric unit
mismatch in the code, see 7 https://
en.wikipedia.org/wiki/
Mars_Climate_Orbiter. See
7 https://hackage.haskell.org/
package/uom-plugin for a Haskell
library that adds support for
typechecking units of measure. The
F# functional language supports
typechecking units directly.

with your progress. You can’t even test to see if your program works until the
typechecker stops getting in your way! But it’s much better for Haskell to catch
mistakes in your program automatically at this stage than requiring you to find
them later manually using testing—or even worse, failing to find one of them
using testing, and having it cause a serious failure later.

As you’ll see later,Haskell’s type system is flexible and expressive, so defining
types that fit the problem you are trying to solve is normally straightforward.
And this often helps you to understand the problem domain by giving you
notation for defining important collections of things that are relevant to your
problem.

Exercises

1. The Haskell command :t can be used to ask about the types of expressions:

> :t id
id :: a -> a
> :t id 'w'
id 'w' :: Char

Soon you’ll learn about lists, which is one of the most important types in
Haskell.Lists arepolymorphic:[1,3,0] is a list of integers and[True,False]
is a list ofBooleans.Hereare some functionson lists:head,tail,replicate,
take, drop, reverse, elem.

Use :t to learn the types of these functions. Try applying them to some
values and use :t to see the types of the results. Include some examples that
combine these functions. If you run into a type error, use :t to figure out
what went wrong.

2. Consider the following description of some students:

» Ashley, Eric, and Yihan are students. Ashley lives in a room in Pollock Halls
for which she pays rent of £600 per month. All three are taking Informatics
1A, and Eric and Yihan are also taking Archeology 1A. Ashley and Eric
were both born in 2003, and Yihan was born in 2002. Ashley listens to hip

https://en.wikipedia.org/wiki/Hindley-Milner_type_system
https://en.wikipedia.org/wiki/Hindley-Milner_type_system
https://en.wikipedia.org/wiki/Hindley-Milner_type_system
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://hackage.haskell.org/package/uom-plugin
https://hackage.haskell.org/package/uom-plugin

Exercises
13 2

hop music while Eric prefers folk music and Yihan likes C-pop. Eric plays
table tennis every Wednesday with Yihan.

Give names (but not definitions) of some types that might be used to model
these students and what is described about them, together with names (but
not definitions) of relevant values/functions and their types.

3. Try to guess the types of the following functions from their names and the
clues given:

• isDigit (for example, isDigit '4');
• intToDigit (yields a result like '5');
• gcd (greatest common divisor of two integers);
• studentSurname (for application to a value of type Student);
• yearOfStudy (ditto);
• scale (for shrinking or enlarging an Image by a given scale factor);
• negate (for example, negate (-3.2) and negate 3);
• howManyEqual (applied to three values, computes how many of them

are the same).

4. Think of some examples of sets that would probably not constitute a type.

15 3

Simple Computations

Contents

Arithmetic Expressions – 16

Int and Float – 16

Function Definitions – 17

Case Analysis – 18

Defining Functions by Cases – 19

Dependencies and Scope – 19

Indentation and Layout – 21

Exercises – 21

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_3

3

16 Chapter 3 · Simple Computations

Arithmetic Expressions

Now that we have some values, classified into types, we can start to compute
with them. Starting with something familiar, let’s useHaskell to do some simple
arithmetic calculations:

> 1 + 2 ˆ 3 * 4
33
> (1 + 2) ˆ 3 * 4
108
> (1 + 2) ˆ (3 * 4)
531441

Here you see that Haskell obeys the rules of arithmetic operator precedenceWatch out when using negation!
4 - -3 will give a syntax error, and
Haskell will understand function
application f -3 as an attempt to
subtract 3 from f. So use
parentheses: 4 - (-3) and f (-3).

that you learned in school—domultiplication and division before addition and
subtraction, but after exponentiation (ˆ)—and you need to use parentheses if
you want something different.

A difference to normal mathematical notation is that you always need
to write multiplication explicitly, for instance, 3 * (1+2) instead of 3(1+2).
Another difference is that Haskell uses only parentheses for grouping, with
other kinds of brackets used for other things, so instead of

The error message is Haskell’s way of
saying that your use of mixed
brackets has confused it. Don’t try to
understand the details at this point!
But it’s handy to know that 1:1 near
the beginning of the error message
says that the problem starts on line 1,
column 1: the square bracket.

> [(1 + 2) * 3] - (4 - 5)
<interactive>:1:1: error:

• Non type-variable argument in the constraint: Num [t]
(Use FlexibleContexts to permit this)

• When checking the inferred type
it :: forall t. (Num [t], Num t) => [t]

you need to write

> ((1 + 2) * 3) - (4 - 5)
10

Int and Float

Because division has a different meaning for integers and for other numerical
types like Float, there are different operators for integer division (div) and for
normal division (/):

> 53634 / 17
3154.9411764705883
> div 53634 17
3154

There’s also an operator to compute the remainder after integer division (mod).
The operators div and mod are functions, with type Int -> Int -> Int. The last

Actually, div and mod have a more
general type, of which
Int -> Int -> Int is an instance. The
function name mod is short for
“modulo”, referring to modular
arithmetic, see 7 https://en.
wikipedia.org/wiki/
Modular_arithmetic.

example above shows how a function with this type can be applied.
Operators like +, -, *, /, and ˆ are functions too. Because they are symbols

rather than having an alphabetic name like div, they are applied using infix
notation. You can surround div and mod with “backticks” to use them as infix
operators:

https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Modular_arithmetic

Function Definitions
17 3

Notice that the backticks in `div`
are different from the single
quotation marks used for characters,
as in 'a'!

> 53634 `div` 17
3154

To use / in prefix style, which is the default for div and mod, you need to enclose
it in parentheses:

> (/) 53634 17
3154.9411764705883

At this point that might seem like a pretty odd thing to want to do, but you’ll
see later why it might be useful.

Function Definitions

You might find it handy to use Haskell to do simple arithmetic calculations, if
you can’t find the calculator app on your phone. But of course the useful thing
aboutHaskell or any other programming language is theway that you canwrite
general recipes for computation that can be applied to lots of different values,
by defining functions. You can turn arithmetic expressions like the ones above
into function definitions by replacing parts of them with variables:

square :: Int -> Int
square n = n * n

pyth :: Int -> Int -> Int
pyth x y = square x + square y

When defining functions, it’s good practice to give themmeaningful names and
to give their type signatures.Type signatures are optional but giving themmakes
it easier to track down type errors; without them, a type error may be reported
in one function when the actual mistake is in another function, far away.

Function names always begin with a lower case letter, except that symbols
like ** and <+> are also allowed:

(**) :: Int -> Int -> Int
m ** n = m ˆ n + n ˆ m

In a function definition like

square n = n * n

the variable n is called the formal parameter. It stands for the value that is
supplied when the function is applied, which is called the actual parameter.
You can use any variable name you like, of course, but it’s good practice to use
a name that hints at its type, where the names m and n used here suggest the
type Int. Variable names like x' and x'' are okay too. Variable names always x' is pronounced “ex-prime” in

American English and “ex-dash” in
British English.

begin with a lower case letter, the same name needs to be used consistently
throughout a function definition, and you can’t use the same variable name in
a single function for different formal parameters. So all of these are wrong:

square N = N * N
square m = n * n
pyth x x = square x + square x

The right-hand side of a function definition is called the function body.
Note that the type of pyth is Int -> Int -> Int. Application of pyth to

actual parameters a and b is written pyth a b and not (as in many other pro-
gramming languages) pyth(a,b). The reason for this will become clear later.

3

18 Chapter 3 · Simple Computations

Here’s a function that produces a result of type Bool.This function is already supplied in
Haskell. even :: Int -> Bool

even n = n `mod` 2 == 0

This function definition uses an equality test, written using the operator ==.Make sure you understand the
difference between equality used in a
definition, written using =, and an
equality test, written using ==.

Here we’re testing whether two values of type Int are equal.

Case Analysis

The result returned by a function will often need to be different depending on
some condition on its input(s). A simple example is the absolute value function
on Int.This function is also supplied in

Haskell. abs :: Int -> Int
abs n = if n<0 then -n else n

Here we use a conditional expression, written using the syntax if exp1 then
exp2 else exp3. The condition exp1 needs to be an expression producing a
value of type Bool, and the result expressions exp2 and exp3 need to produce
values of the same type. All of these expressions can be as complicated as you
like. You might be familiar with conditional statements in other programming
languages, where you can omit the else part to say that if the condition is false,
do nothing. In Haskell, you always need to include the else part; otherwise,
the expression will have no value when the condition is false.

An alternative way of writing such a function definition is to explicitly split
it into cases using guards. Here’s an example, for a function to compute the
maximum of three integers:

max3 :: Int -> Int -> Int -> Int
max3 a b c

| a>=b && a>=c = a
| b>=a && b>=c = b
| otherwise = c -- here, c>=a and c>=b

Function definitions using guards
often end with an otherwise case,
but that’s not required.

Each guard is an expression that returns True or False. When max3 is applied
to values, each of the guards is evaluated in order, from top to bottom, until
one of them produces True; then the result of the application is the value of
the corresponding result expression on the right-hand side of the equals sign.
The expression otherwise is just another name for True, so the last result
expression will be the result if no previous guard has produced True.

The first two guards in this example use the conjunction function && for
combining two expressions of type Bool. The result is True only when both
of the expressions have value True. In other examples, the disjunction function
|| is useful. The result is True when either or both of the expressions havex && y is pronounced “x and y”, and

x || y is pronounced “x or y”. value True. Negation (not) is also useful, on its own or in combination with
conjunction and/or disjunction.

The last line of the definition of max3 includes a comment, starting with the
symbol -- and continuing until the end of the line. You can write anything you
want in a comment, but normally they are used to explain something about
the code that a reader might find helpful. That includes things that you might
yourself forget, if you come back to look at your code next month or next year!

Dependencies and Scope
19 3

Defining Functions by Cases

We have seen two ways to distinguish cases in a function definition. A third
way is to give a separate definition for each case. This is possible when the input
has a type that has been defined by cases, such as

data Bool = False | True

and the case analysis is according to the values of the type. We will see as we
go along that this situation arises very frequently.

The built-in negation function is defined using two separate equations:

not :: Bool -> Bool
not False = True
not True = False

The built-in conjunction function can be defined as follows:

(&&) :: Bool -> Bool -> Bool
True && y = y
False && y = False

or, equivalently:

(&&) :: Bool -> Bool -> Bool
True && True = True
_ && _ = False

The first definition of conjunction shows how a variable can be used for a
parameter on which no case analysis is required. The second definition shows
how case analysis can be done on multiple parameters. The second line uses
the wildcard _, which is useful when the corresponding value isn’t needed in the _ is pronounced “underscore”.
body: it saves you thinking of a name for it, as well as telling the reader that
its value won’t be used. Each use of _ is independent, so using it twice in the
last line above doesn’t break the “don’t use the same variable name for different
formal parameters” rule, and the matching actual parameters can be different.

Dependencies and Scope

All of the function definitions above have been self-contained, apart from their
references to Haskell’s built-in functions. Writing more complicated function
definitions often requires auxiliary definitions. You might need to define vari-
ables to keep track of intermediate values, and/or helper functions that are used
to define the function you really want.

Here’s an example, for computing the angle between two 2-dimensional
vectors as cos−1 (in Haskell, acos) of the quotient of their dot product by the
product of their lengths: In Chap. 5, you will see that a

2-dimensional vector can be
represented by a single value of type
(Float,Float).

angleVectors :: Float -> Float -> Float -> Float -> Float
angleVectors a b a' b' = acos phi

where phi = (dotProduct a b a' b')
/ (lengthVector a b * lengthVector a' b')

dotProduct :: Float -> Float -> Float -> Float -> Float
dotProduct x y x' y' = (x * x') + (y * y')

lengthVector :: Float -> Float -> Float
lengthVector x y = sqrt (dotProduct x y x y)

https://doi.org/10.1007/978-3-030-76908-6_5

3

20 Chapter 3 · Simple Computations

The definition of angleVectors uses a where clause to define a variable
locally to the function definition—that is, phi is only visible in the body of
angleVectors.

The functions dotProduct and lengthVector are helper functions that
are required for computing the result of angleVectors. If we judge that
dotProduct and/or lengthVector will only ever be needed inside the defi-
nition of angleVectors, we can define one or both of them locally inside that
definition as well, by including them in the where clause. This avoids distract-
ing attention from angleVectors, which is the main point of this sequence of
definitions:

You can include type signatures for
functions defined inside a where
clause, as in this example: just put
the type signature on a separate line,
preferably just before the function
definition, like a type signature
outside a where clause.

angleVectors :: Float -> Float -> Float -> Float -> Float
angleVectors a b a' b' = acos phi

where phi = (dotProduct a b a' b')
/ (lengthVector a b * lengthVector a' b')

dotProduct ::
Float -> Float -> Float -> Float -> Float

dotProduct x y x' y' = (x * x') + (y * y')

lengthVector :: Float -> Float -> Float
lengthVector x y = sqrt (dotProduct x y x y)

While there is a choice whether or not to make dotProduct and/or
lengthVector local to the definition of angleVectors, there is no such
choice for the variable phi: its definition depends on the parameters a, b,
a' and b'. Suppose we try to define phi separately, outside the definition of
angleVectors:

angleVectors :: Float -> Float -> Float -> Float -> Float
angleVectors a b a' b' = acos phi

phi = (dotProduct a b a' b')
/ (lengthVector a b * lengthVector a' b')

Haskell will produce a sequence of error messages, starting with these two:

vectors.hs:4:19: error: Variable not in scope: a :: Float

vectors.hs:4:21: error: Variable not in scope: b :: Float

WhatHaskell is complaining about is thata andb are undefined in thedefinition
of phi. They are defined inside the body of angleVectors, but are meaningless
outside that definition.

The technical term for an association between a name and a value is a bind-
ing. This includes function definitions, which bind names to functional values,
as well as local variable/function definitions. And function application creates
a temporary binding between its formal parameters and the actual parameter
values. The part of a program in which the name is then defined (or bound) is
called its scope. The variables a and b (and a' and b') are formal parameters
of angleVectors, and so their scope is its body. The scope of angleVectors

Notice that the order of definitions
doesn’t matter! In the first definition
of angleVectors, the scope of
dotProduct and lengthVector
include the definition of
angleVectors, where they are used,
even though their definitions came
later.

itself is the whole program. In the first definition of angleVectors, that was
also the case for dotProduct and lengthVector, but in the second definition
their scope was restricted to the body of angleVectors.

Exercises
21 3

Indentation and Layout

Youmight have noticed that some care has been taken in the examples above to
indent code so that things line up nicely. This is done mainly in order to make it
easy to read, but in Haskell layout actually matters, and sloppy indentation can
lead to syntax errors. Haskell’s offside rule requires, among other things, that

The tab character has different
behaviour in different text editors;
some editors will replace it by spaces
and some will include the tab
character in your program. The
latter is a potential source of great
confusion, since Haskell may
interpret your program differently
from the way it looks on your screen.
So it’s better to avoid tabs
completely.

the definitions in a where clause are lined up vertically. And parts of a phrase
should be indented further than the start of the phrase. So

By now you will probably have also
noticed that different fonts are used
when displaying Haskell programs:
boldface for type names, italics for
comments, etc. This is syntax
highlighting, used to improve
readability. You don’t need to take it
into account when you enter your
programs. Colour is often used in
syntax highlighting but here we stick
with boldface and italics.

angleVectors a b a' b' = acos phi
where phi = (dotProduct a b a' b')

/ (lengthVector a b * lengthVector a' b')
dotProduct x y x' y' = (x * x') + (y * y') -- fail
lengthVector x y = sqrt (dotProduct x y x y)

and

angleVectors a b a' b' = acos phi
where phi = (dotProduct a b a' b')

/ (lengthVector a b * lengthVector a' b')
dotProduct x y x' y' = (x * x') + (y * y') -- fail

lengthVector x y = sqrt (dotProduct x y x y)

and

angleVectors a b a' b' = acos phi
where phi = (dotProduct a b a' b')

/ (lengthVector a b * lengthVector a' b') -- fail
dotProduct x y x' y' = (x * x') + (y * y')
lengthVector x y = sqrt (dotProduct x y x y)

will all produce syntax errors. (The failing line has a comment in each case.) See 7 https://en.wikibooks.org/wiki/
Haskell/Indentation for more
information on indentation in
Haskell.

It’s possible to play football without paying much attention to the details of
the offside rule, and the same goes for Haskell programming. If you take a little
bit of care to make your programs readable by lining things up in the obvious
way, you should have no trouble.

Exercises

1. Define a function root :: Float -> Float -> Float -> Float that takes
the coefficients a, b, c of a quadratic equation ax2 + bx + c = 0 as input
and computes one of its solutions using the quadratic formula Use sqrt :: Float -> Float to

compute the square root.
−b±

√
b2 − 4ac
2a

If the equation has no real solutions because b2 < 4ac then root will return
NaN, which means “not a number”.

2. Define a function hour :: Int -> Int that takes as input a number of
minutes and calculates what hour it is after that time has passed, starting
at 1 o’clock and using a 12-hour clock. For example, hour 50 should be 1,
hour 60 should be 2, and hour 2435 should be 5.

3. Define a function between : Int -> Int -> Int -> Int that computes which
of its three inputs is between the other two. For example, between 3 5 4
should be 4 and between 3 5 3 should be 3.

4. Define a “exclusive or” function xor :: Bool -> Bool -> Bool that returns
True if either of its inputs is True, but not both.

https://en.wikibooks.org/wiki/Haskell/Indentation
https://en.wikibooks.org/wiki/Haskell/Indentation

3

22 Chapter 3 · Simple Computations

5. Give three definitions of the disjunction function (||) :: Bool -> Bool
-> Bool: one using if-then-else, one using guards, and one using defini-
tion by cases. Which definition do you think is most elegant or easiest to
understand? Why?

6. Sometimes you need to convert a Float to an Int. Haskell provides three
functions that do the conversion: ceiling, floor, and round. Investigate
their behaviour, including what they do on negative numbers, numbers like
4.5 and−4.5 that are halfway between adjacent integers, and values of type
Float that are larger than the maximum (maxBound :: Int) and smallerHaskell also provides a type Integer

of unbounded-size integers. than the minimum (minBound :: Int) values of type Int.

23 4

Venn Diagrams and Logical
Connectives
Contents

Visualising Sets – 24

Visualising Operations on Sets – 26

Logical Connectives – 27

Truth Tables – 28

Exercises – 30

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_4

4

24 Chapter 4 · Venn Diagrams and Logical Connectives

Visualising Sets

It’s possible to work with sets by listing all of their elements—provided they are
finite sets, of course—and then comparing sets by comparing the elements in
these lists. But a visual representation provides much better support for human
intuition. You’ve probably already seen Venn diagrams used to represent andJohn Venn (1834−1923) was an

English mathematician, logician, and
philosopher, see 7 https://en.
wikipedia.org/wiki/John_Venn.

relate sets. Here’s a quick reminder of how to draw them and what they mean.
Let’s start with some small sets of numbers:

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
A = {x ∈ S | x is divisible by 2}
B = {x ∈ S | x is divisible by 3}

For the sake of this example, we’ll regard S as the universe of elements that
we’re interested in, with A and B being subsets of that universe. We can draw
that situation like this:

A B

S

The fact that the circles corresponding to A and B are completely within
S means that they are subsets of S. The fact that the circles overlap, but only
partially, gives a place (in themiddle) to put elements that belong to bothA and
B, as well as places to put elements that belong to each set but not the other.

We can fill in the diagram by testing all of the elements in S against the
properties in the definitions ofA and B to decide where they belong. For exam-
ple, 1 isn’t divisible by 2 and it also isn’t divisible by 3, so it doesn’t belong to
either A or B. We therefore put it outside of both circles:

A B

S

1

2 is divisible by 2, obviously, but it isn’t divisible by 3, so it belongs to A but
notB. So we put it into the region of the circle forA that doesn’t overlap withB:

A B

S

1
2

And so on. 6 is divisible by both 2 and 3, so it belongs to both sets. We
therefore put it into the middle region, where the circles overlap.

https://en.wikipedia.org/wiki/John_Venn
https://en.wikipedia.org/wiki/John_Venn

Visualising Sets
25 4

Here’s the completeddiagramwithall of the elementsofSwhere theybelong:

A B

S

1
2 3

4
5

6

7

8
910

11

12

Now, let’s consider a different set A, while keeping S and B the same:

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
A = {x ∈ S | x is divisible by 5}
B = {x ∈ S | x is divisible by 3}

That gives the following Venn diagram:

A B

S

1

2

11

4

7

8

5

10

3
6
9

12

Finally, let’s consider yet another choice of the set A:

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
A = {x ∈ S | x is divisible by 6}
B = {x ∈ S | x is divisible by 3}

That gives the following Venn diagram:

A B

S

6
12

3

9

1
2

8

11

5
4

7

10

The examples above involve just two sets,A and B (and a universe S). Venn
diagrams involving three sets have eight regions: Venn diagrams involving more than

three sets are possible but are harder
to draw, see 7 https://en.wikipedia.
org/wiki/Venn_diagram.

A B

C S

https://en.wikipedia.org/wiki/Venn_diagram
https://en.wikipedia.org/wiki/Venn_diagram

4

26 Chapter 4 · Venn Diagrams and Logical Connectives

We have already seen how subset and set membership are reflected in a
Venn diagram. Since A = B means that A ⊆ B and also B ⊆ A, set equality is
represented by A and B occupying exactly the same region of the diagram.

When we work with Venn diagrams, the elements of the sets aren’t usually
filled in. As we’ll see, they are most useful in visualising potential relationships
between arbitrary sets, rather than listing the actual elements of specific sets.

Visualising Operations on Sets

Venn diagrams can be used to represent operations on sets, using shading of
regions. The elements ofA∪B are all those that are in eitherA or B, or in both.
Thus, A ∪ B is the shaded region in this diagram:

A B

S

The elements of A ∩ B are all those that are in both A and B:

A B

S

The elements in A − B are those that are in A but not in B:

A B

S

and the elements in the complement Ā of A (with respect to the universe S) are
those that are not in A:

A

S

Logical Connectives
27 4

We can do proofs of set-theoretic equalities involving these operations by
drawing diagrams and comparing them. For example, to prove A∩ (B ∪C) =
(A ∩ B) ∪ (A ∩ C) we can draw a diagram of A ∩ (B ∪ C):

A B

C S
B C

A B

C S
A (B C)

and a diagram of (A ∩ B) ∪ (A ∩ C):

A B

C S
A B

A B

C S
A C

A B

C S
(A B) (A C)

The fact that the shaded region in both diagrams are the same means that

Diagrammatic proofs are often more
intuitively appealing than symbolic
proofs. Compare this proof of
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

with your solution to Exercise 1.5(a)
and see what you think.

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Logical Connectives

We have already seen some Haskell functions that are used to express guards
and conditions in conditional expressions:

not :: Bool -> Bool -- negation
(&&) :: Bool -> Bool -> Bool -- conjunction
(||) :: Bool -> Bool -> Bool -- disjunction

These functions, called logical connectives, are fundamental building blocks of
logic. In logic andMathematics, we use the symbol ¬ for not, the symbol ∧ for The pronunciation of these symbols

is the same as for the Haskell
versions: “not” for ¬, “and” for ∧,
and “or” for ∨. T or � is used
instead of 1 in some books, and F or
⊥ instead of 0.

&&, the symbol ∨ for ||, 0 for False, and 1 for True.
The meanings of the logical connectives are defined by truth tables which

show what output is produced when they are applied to each of the possible
combinations of inputs.

Negation is easy since it takes just one input. The table says that if a is false
then ¬a is true, and vice versa.

a ¬a
0 1
1 0

Conjunction and disjunction have two inputs each, so their truth tables have
four rows. For a∧ b to be true, both a and bmust be true, while for a∨ b to be
true, at least one of a or b must be true.

4

28 Chapter 4 · Venn Diagrams and Logical Connectives

a b a ∧ b
0 0 0
0 1 0
1 0 0
1 1 1

a b a ∨ b
0 0 0
0 1 1
1 0 1
1 1 1

The connective ∨ is sometimes called inclusive disjunction since it doesn’t cap-An alternative is exclusive or, written
⊕. The or function in Haskell
corresponds to ∨.

ture the exclusive sense of “or” in English sentences like “You can have soup
or salad”, where having both is not an option.

Another connective that will come up later is implication, for which we will
use the symbol →.→ is pronounced “implies”. Some

books use ⇒ or ⊃ instead of →.
Don’t confuse it with Haskell’s
function arrow ->!

a b a → b
0 0 1
0 1 1
1 0 0
1 1 1

The implication a → b, which is intended to capture “if a then b”, is false
only if a is true and b is false. This can be confusing for at least two reasons.
First, in contrast to English, there is no requirement of a causal connectionIn logical systems that allow more

values than 0 and 1, these problems
can be partly resolved by using a
third value meaning “undefined” for
some of these combinations.

between a and b. “If the sky is blue then 1 + 1 = 2” doesn’t make much sense
in English, but it’s true in logic because 1 + 1 = 2, whether the sky is blue or
not. Second, sentences like “If 1 + 1 = 3 then grass is orange” where the first
statement is false don’t make much sense in English, but in logic they are true
no matter what the second statement is.

Truth Tables

We have just seen truth tables used to define the meanings of the connectives.
The same idea can be used towork out the values of complex logical expressions
that involve combinations of the connectives.

Here’s a simple example, for the expression (a ∨ b) ∧ (a ∨ c). We need a
column for each of the variables in the expression (a, b, c), each of its sub-
expressions (a∨ b and a∨ c), and for the expression (a∨ b)∧ (a∨ c) itself. And
we need a row for each combination of values of the variables:

a b c a ∨ b a ∨ c (a ∨ b) ∧ (a ∨ c)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

We can fill in a row byworking from left to right: the value of each expression is

Writing down the values of the
variables in the order given—or in
some other systematic order—rather
than writing down different
combinations until you can’t think of
any more, is strongly recommended!

determined by values that are already to its left in the table. Taking the second
row, where a = b = 0 and c = 1, because it’s a little more interesting than the
first row: we can easily see that a ∨ b = 0 and a ∨ c = 1 because the values of
a, b, and c are available in the first three columns. Then we can use the values
of a ∨ b and a ∨ c to calculate that (a ∨ b) ∧ (a ∨ c) = 0:

Truth Tables
29 4

a b c a ∨ b a ∨ c (a ∨ b) ∧ (a ∨ c)
0 0 0
0 0 1 0 1 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Proceeding in the same way to fill in the rest of the table gives:

a b c a ∨ b a ∨ c (a ∨ b) ∧ (a ∨ c)
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1

The columns in the middle of the table—between the values of the variables
and the final result—are only used to hold intermediate values, so once the table
is finished they can be left out:

a b c (a ∨ b) ∧ (a ∨ c)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

One reason to build a truth table for an expression is in order to find out if
it has certain properties. An expression that is always true—that is, where the
final column contains only 1s—is called a tautology. An example of a tautology
is the expression a ∨ ¬a.

On the other hand, a contradiction is an expression that is always false, so the
final column contains only 0s. An example is a∧ ¬a. Complex expressions can
be simplified by replacing tautologies by the expression 1 and contradictions
by the expression 0.

Finally, an expression that is true for at least one combination of values of
variables—that is, where the final column of the truth table contains at least
one 1—is called satisfiable. The truth table above shows that (a ∨ b) ∧ (a ∨ c)
is satisfiable but is neither a tautology nor a contradiction.

Once you get used to building truth tables, you might be able to leave out
some of the columns inmore complicated examples, to avoid excessive numbers
of columns. For example, here is a truth table for the expression (a∧ ¬b∧ (c∨
(d ∧ b)) ∨ (¬b ∧ ¬a)) ∧ c, in which columns for the sub-expressions ¬a, ¬b,
d ∧ b, and a ∧ ¬b ∧ (c ∨ (d ∧ b)) ∨ (¬b ∧ ¬a) are omitted:

4

30 Chapter 4 · Venn Diagrams and Logical Connectives

a b c d c ∨ (d ∧ b) a ∧ ¬b ∧ (c ∨ (d ∧ b)) ¬b ∧ ¬a (a ∧ ¬b ∧ (c ∨ (d ∧ b)) ∨ (¬b ∧ ¬a)) ∧ c
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1
0 0 1 1 1 0 1 1
0 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 0
0 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 1
1 0 1 1 1 1 0 1
1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 1 1 0 0 0

It’s easy tomakemistakes in complicated examples like this. Since the logical
connectives are Haskell functions, you can use Haskell to check that entries are
correct. For example, to check that the last entry in the 11th row above isOr you can use Haskell to produce

the entries in the first place, if you
prefer typing to thinking!

correct, we can define:

complicated :: Bool -> Bool -> Bool -> Bool -> Bool
complicated a b c d =

(a && not b && (c || (d && b)) || (not b && not a)) && c

and then

> complicated True False True False
True

The truth table for an expressionwithnvariableswill have2n rows, sowritingThere are many truth table
generators available on the web, for
example, 7 https://web.stanford.edu/
class/cs103/tools/truth-table-tool/.

out truth tables by hand is infeasible for really complex logical expressions.

Exercises

1. Draw a three-set Venn diagram for the following sets:

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
A = {x ∈ S | x > 6}
B = {x ∈ S | x < 5}
C = {x ∈ S | x is divisible by 3}

where S is taken to be the universe.
2. Use Venn diagrams to prove:

(a) union distributes over intersection: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(b) associativity of union and intersection
(c) De Morgan’s laws: A ∪ B = Ā ∩ B̄ and A ∩ B = Ā ∪ B̄

3. Use Venn diagrams to prove that (A ∩ B) − (A ∩ C) ⊆ B − C.
4. Produce truth tables for the following expressions, and check whether they

are tautologies, or contradictions, or satisfiable.

(a) (a ∨ b) ∧ (¬a ∧ ¬b)
(b) a → ((b → c) ∨ (b → ¬c))
(c) ((a ∧ ¬b) ∨ c ∨ (¬d ∧ b) ∨ a) ∧ ¬c

https://web.stanford.edu/class/cs103/tools/truth-table-tool/
https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Exercises
31 4

5. There is a close relationship between operations on sets and the logical
connectives. For example, union corresponds to disjunction: x ∈ A∪B iff
x ∈ A ∨ x ∈ B.
It follows from this relationship that proofs of equalities on sets correspond
to proofs of equalities between logical expressions. For example, supposewe
prove that union is commutative:A∪B = B∪A. Then x ∈ A∨x ∈ B iff x ∈
A∪B iff x ∈ B∪A iff x ∈ B∨x ∈ A.Oncewe introduce predicates inChap. 6
and explain their relationship to subsets of the universe in Chap. 8, this will
turn out to amount to a proof of a ∨ b = b ∨ a.

(a) What (combinations of) connectives correspond to intersection, differ-
ence, and complement?

(b) What equalities between logical expressions correspond to the equalities
on sets proven in Exercise 2?

33 5

Lists and Comprehensions

Contents

Lists – 34

Functions on Lists – 34

Strings – 36

Tuples – 37

List Comprehensions – 38

Enumeration Expressions – 39

Lists and Sets – 40

Exercises – 40

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_5

5

34 Chapter 5 · Lists and Comprehensions

Lists

So far, our computations have involved simple “atomic” data values, hav-
ing types like Int and Bool. More interesting programs involve the use of
“compound” data structures, which group together a number of data values
and allow them to be handled as a unit. The most important data structure
in Haskell and similar programming languages is the list, which is a sequence
of values of the same type. Most of the programs you will write in Haskell
will involve lists, and Haskell provides several special notations to make such
programs easy to write.

Here are some examples of lists, including their types:

[1,3,2] is pronounced “the list
containing 1, 3 and 2” and [Int] is
pronounced “list of Int”. [[Int]] is
pronounced “list of list of Int”.

someNumbers :: [Int]
someNumbers = [1,3,2,1,7]

someLists :: [[Int]]
someLists = [[1], [2,4,2], [], [3,5]]

someFunctions :: [Bool -> Bool -> Bool]
someFunctions = [(&&), (||)]

A list is written using square brackets, with commas between its elements. Order
matters: [1,2] and [2,1] are different lists. The type of a list is written [t],
where t is the typeof the elements in the list.As the examples abovedemonstrate,
t can be any type, including a list type [s] (so that the elements in the list are
themselves lists, containing elements of type s) or a type of functions. The lists
in a list of type [[s]] can have different lengths, as in someLists. And the
empty list [], which contains no elements and has the polymorphic type [a][] is pronounced “nil”.
(because it is the empty list of integers, and also the empty list of strings, etc.)
is also a list.

Here is an example of a mistaken attempt to define a list:

> someStuff = [True,[1,2],3]
<interactive>:1:19: error:

• Couldn't match expected type ‘Bool’ with actual type ‘[Integer]’
• In the expression: [1, 2]

In the expression: [True, [1, 2], 3]
In an equation for ‘someStuff’: someStuff = [True, [1, 2], 3]

Remember, all of the values in a list are required to be of the same type.In the error message, Haskell says
that [1,2] has type [Integer]. It
also has types [Int], [Float],
[Double], etc. Functions on Lists

Haskell provides many functions for operating on lists. Most important are the
functions for building a list by adding an element to the front of an existing
list, and for taking apart a list by returning its first element (its head) and the
rest (its tail). Other functions are for computing the length of a list, for testing
whether or not a list is empty, for reversing the order of the elements in a list,
for joining two lists together, etc.

: is pronounced “cons”, which is
short for “construct”.

> 1:[3,2,1,7]
[1,3,2,1,7]
> head [1,3,2,1,7]
1
> tail [1,3,2,1,7]
[3,2,1,7]
> tail []

Functions on Lists
35 5

*** Exception: Prelude.tail: empty list
> length [1,3,2,1,7]
5
> null [1,3,2,1,7]
False
> null []
True
> reverse [1,3,2,1,7]
[7,1,2,3,1]
> [1,3,2,1,7] ++ reverse [1,3,2,1,7]
[1,3,2,1,7,7,1,2,3,1]

Many functions on lists have polymorphic types:

• (:) :: a -> [a] -> [a]
• head :: [a] -> a
• tail :: [a] -> [a]
• length :: [a] -> Int
• null :: [a] -> Bool
• reverse :: [a] -> [a]
• (++) :: [a] -> [a] -> [a]

The list notation [1,3,2,1,7] is shorthand for the expression
1:(3:(2:(1:(7:[])))) which can be written without parentheses
1:3:2:1:7:[] because : is right associative, meaning that Haskell reads x:y:z
as x:(y:z) rather than (x:y):z.

Note that : can only be used to add an element to the front of a list! So the
following doesn’t work:

> [1,3,2,1]:7
<interactive>:1:1: error:

• Non type-variable argument in the constraint: Num [[t]]
(Use FlexibleContexts to permit this)

• When checking the inferred type
it :: forall t. (Num [[t]], Num t) => [[t]]

You can use ++ to add an element to the end of a list, but—because it operates ++ is pronounced “append”.
on two lists, rather than an element and a list—you need to first put the element
into a singleton list:

> [1,3,2,1] ++ [7]
[1,3,2,1,7]

Built-in functions like tail are defined in the Prelude, a part of Haskell’s
library that is loaded automatically when it starts. There are thousands of other
modules in Haskell’s library, each providing a group of related definitions. To
use a function that is defined there, you need to make it clear where in the

Reminder: Hoogle (7 https://hoogle.
haskell.org/) is a good tool for
exploring the contents of Haskell’s
library.library the definition is located. For example, the function transpose ::

[[a]] -> [[a]], which interchanges the rows and columns of an m× nmatrix
represented as a list of lists, is in the Data.List library module along with
many other functions for operating on lists. You can load the module using an
import declaration:

Alternatively, you can import just
the transpose function by writing
import Data.List (transpose)
or import everything except
transpose by writing
import Data.List hiding
(transpose).

> import Data.List
> transpose [[1,2,3],[4,5,6]]
[[1,4],[2,5],[3,6]]

https://hoogle.haskell.org/
https://hoogle.haskell.org/

5

36 Chapter 5 · Lists and Comprehensions

Of course, you can use all of the notation introduced earlier towrite function
definitions on lists. For instance, this function definition uses guards:

headEven :: [Int] -> Bool
headEven xs | not (null xs) = even (head xs)

| otherwise = False

Alternatively, you can give separate equations to define the function for the
empty list and for non-empty lists:

headEven :: [Int] -> Bool
headEven [] = False
headEven (x:xs) = even x

Look carefully at the second equation: the pattern x:xs will only match a non-
Variables with names like xs,
pronounced “exes”, are often used
for lists. Then the names of variables
for list elements are chosen to match,
in this case x.

empty list, with the variables x and xs giving access to its head and tail in the
body of the function. Since there happens to be no use for xs in the body in this
particular case, you can replace it with a wildcard if you like.

List patterns are only allowed to contain variables (with no repeated variable
names), wildcards, [], : and literal values. Expressions that are equivalent toLiteral value—“literal” for short—is

the terminology for a value that
doesn’t need to be evaluated, like 42,
True or 'z'.

such patterns, like [a,2,_] (shorthand for a:2:_:[]), are also allowed. Here’s
a function for returning the square root of the second element in a list, or -1.0
if there is no second element:

sqrtSecond :: [Float] -> Float
sqrtSecond [] = -1.0
sqrtSecond (_:[]) = -1.0
sqrtSecond (_:a:_) = sqrt a

The second equation can also be written

sqrtSecond [_] = -1.0

Other ways of defining functions on lists will be introduced in later chapters.

Strings

Recall that Char is Haskell’s type of characters such as 'w'. Haskell provides
special notation for lists of characters: the type String is another name for the
type [Char], and the notation "string" is shorthand for the list of characters
['s','t','r','i','n','g']. Accordingly, all of the functions on lists work
on strings:

> 's':"tring"
"string"
> head "string"
's'
> tail "string"
"tring"
> length "string"
6
> reverse "string"
"gnirts"

Equality testing (==) and the order relations (<, >, <= and >=) work on strings
in the way you would expect, with (<) :: String -> String -> Bool giving
the familiar dictionary ordering:

> "app" < "apple" && "apple" < "banana"
True
> "apple" < "app"
False

Tuples
37 5

And you can define functions on strings using patterns:

import Data.Char
capitalise :: String -> String
capitalise "" = ""
capitalise (c:cs) = (toUpper c) : cs

where the function toUpper :: Char -> Char, in the Data.Char librarymodule,
converts a character to upper case.

Tuples

Tuples are another kind of compound data structure. A tuple is a fixed length A 2-tuple is sometimes called a pair,
a 3-tuple is sometimes called a triple,
etc.

sequence of data values where the components of the tuple can have different
types. For example:

coordinates3D :: (Float,Float,Float)
coordinates3D = (1.2, -3.42, 2.7)

friends :: [(String,Int)]
friends = [("Hamish",21), ("Siobhan",19), ("Xiaoyu",21)] ("Siobhan",19) is pronounced “the

pair (or tuple) containing the string
"Siobhan" and the integer 19”, or
sometimes just “Siobhan, 19”.

A tuple is written with parentheses, with its elements separated by commas, and
a tuple type is written using the same notation.

A tuple is fixed-length in the sense that adding more components yields a
tuple of a different type. So its length is determined by its type. This is in contrast
to a list, where a list of type [t]may have any length. But as with lists, the order
of the components of a tuple matters: (1,2) and (2,1) are different tuples.

Here are two functions using tuples as parameter or result:

The style of name used in
metresToFtAndIn, where a sequence
of words is squashed together into a
single word with capitalisation
indicating the word boundaries, is
called “camel case” because of the
“humps” caused by the protruding
capital letters.

metresToFtAndIn :: Float -> (Int,Int)
metresToFtAndIn metres = (feet,inches)

where feet = floor (metres * 3.28084)
inches = round (metres * 39.37008) - 12 * feet

nameAge :: (String,Int) -> String
nameAge (s,n) = s ++ "(" ++ show n ++ ")"

The definition of nameAge uses a pattern to extract the components of the
actual parameter pair, and the Prelude function show to convert an Int to a

show can be used to convert values of
many types to String—more later.

String. An equivalent definition uses the selector functions fst :: (a,b) -> a
and snd :: (a,b) -> b instead of a pattern, as follows:

fst is pronounced “first” and snd is
pronounced “second”.

nameAge :: (String,Int) -> String
nameAge person = fst person ++ "(" ++ show (snd person) ++ ")"

but function definitions using patterns are usually shorter and easier to read,
as in this case.

The singleton list [7] is different from the value 7 that it contains. In con-
trast, there is no difference between the 1-tuple (7) and the value 7, or between
the types (Int) and Int. However, there is such a thing as a 0-tuple, namely,
the value (), which has type (). Since there is just one 0-tuple, such a value
carries no information! But 0-tuples can still be useful, as you will see later on.

5

38 Chapter 5 · Lists and Comprehensions

List Comprehensions

List comprehensions in Haskell are a powerful and convenient notation for
defining computations on lists, inspired by set comprehension notation (see
page 3). Some simple examples will help to introduce the main ideas.

[n*n | n <- [1,2,3]] is
pronounced “the list of n*n where n
is drawn from [1,2,3]”.

> [n*n | n <- [1,2,3]]
[1,4,9]

> [toLower c | c <- "Hello, World!"]
"hello, world!"

> [(n, even n) | n <- [1,2,3]]
[(1,False),(2,True),(3,False)]

> [s++t | s <- ["fuzz","bizz"], t <- ["boom","whiz","bop"]]
["fuzzboom","fuzzwhiz","fuzzbop","bizzboom","bizzwhiz","bizzbop"]

List comprehensions are written using the notation [· · · |· · ·]. The second part
of the comprehension, after the vertical bar |, usually includes one or more
generators, each of which binds a local variable to consecutive elements of the
indicated list, using the notation var <- list. The part before the vertical bar isNote the direction of the arrow in a

generator! A good way to remember
is to notice that <- looks a little like
∈ (set membership): n <- [1,2,3]
versus n ∈ {1, 2, 3}. The other kind of
arrow, ->, is used for function types
and other things in Haskell.

an expression producing an element of the resulting list, given values of those
variables. The examples show that elements are selected by the generators in the
same order as they appear in the list, and what happens in the case of multiple
generators.

Guardsmay be added to the second part of comprehensions, after a comma,
to specify which of the values selected by the generators are to be included when
returning results.

> [n*n | n <- [-3,-2,0,1,2,3,4,5], odd n, n>0]
[1,9,25]

> [s++t | s <- ["fuzz","bizz"], t <- ["boom","whiz","bop"], s<t]
["fuzzwhiz","bizzboom","bizzwhiz","bizzbop"]

[n*n | n <- l, odd n, n>0] is
pronounced “the list of n*n where n
is drawn from l such that n is odd
and n is greater than 0”.

Notice the different uses of the conditions n<0 and odd n in the following
example:

> [if n<0 then "neg" else "pos" | n <- [3,2,-1,5,-2], odd n]
["pos","neg","pos"]

The condition odd n is a guard used in the second part of the comprehension
to select the odd elements from the list [3,2,-1,5,-2]. On the other hand,
the condition n<0 is used in a conditional expression in the first part of the
comprehension to do different things with the elements that are selected.

List comprehensions can be used anywhere that a list is required, including
in function definitions.

squares :: [Int] -> [Int]
squares ns = [n*n | n <- ns]

odds :: [Int] -> [Int]
odds ns = [n | n <- ns, odd n]

sumSqOdds :: [Int] -> Int
sumSqOdds ns = sum [n*n | n <- ns, odd n]

In sumSqOdds, the Prelude function sum :: [Int] -> Int is used to add
together all of the numbers in the list defined by the comprehension. Applying

Enumeration Expressions
39 5

sum to [] gives 0. There is also a function product :: [Int] -> Int for mul-
sum and product also work on lists
of Float, Integer, Double, etc.

tiplying together all of the numbers in a list, but product [] gives 1. Similar
functions that work on lists of Boolean values are and :: [Bool] -> Bool (con-
junction) and or :: [Bool] -> Bool (disjunction), where and [] is True and
or [] is False. (Why do you think those are the right results for []?)

One of the things that makes set comprehensions so powerful is the way that
they define operations on entire lists. This lifts the conceptual level of program-
ming from consideration of single values to transformations on whole data
structures, all at once. The change in perspective is analogous to the way that
arithmetic operations in computing conceptually operate on numbers rather
than on their binary representations. Of course, there is an underlying compu-
tation on list elements—or on binary representations of numbers, in the case
of arithmetic—but most of the time you can think at the level of the whole list.

Enumeration Expressions

Haskell makes it easy to work with lists of consecutive values like [0,1,2,3,4,
5,6,7,8,9,10] by providing a notation that allows you to just indicate the
endpoints in the sequence, in this case [0..10]. You can get it to count down,
or to use steps different from 1, by providing more information, and it works
for other types too:

> [10,9..0]
[10,9,8,7,6,5,4,3,2,1,0]
> [10,8..0]
[10,8,6,4,2,0]
> ['a'..'p']
"abcdefghijklmnop"

and such expressions are also useful in function definitions:

isPrime :: Int -> Bool
isPrime n = null [n | x <- [2..n-1], n `mod` x == 0]

pythagoreanTriples :: [(Int,Int,Int)]
pythagoreanTriples =

[(a,b,c) | a <- [1..10], b <- [1..10], c <- [1..10],
aˆ2 + bˆ2 == cˆ2]

You can even leave off the second endpoint to get an infinite list! The expres-
sion [0..] gives [0,1,2,3,4,5,6,7,8,9,10,11,. . .]. If you try typing it into
GHCi, you will need to interrupt the computation unless your idea of a good Typing Control-C is the usual way to

interrupt an infinite computation.time is to spend all day and all night watching your screen fill with increasingly
large numbers.

Although they might not seem very useful right now, we will see later that
Haskell’s ability to compute with infinite lists like [0..] using a computation
strategy called lazy evaluation—which does just enough computation to pro-
duce a result—makes it possible to write elegant programs. And because of lazy
evaluation, you don’t always need to interrupt them:

> head (tail [0..])
1

5

40 Chapter 5 · Lists and Comprehensions

Lists and Sets

Sets are conceptually important for describing the world and the relationships
between things in the world. In Haskell, we can use lists for most of the things
that make sets useful, and to make that easier we can use functions on lists that
mimic set operations. For example:

intersect, union, and set difference
(\\) are in the Data.List library
module.

intersect :: Eq a => [a] -> [a] -> [a]
s `intersect` t = [x | x <- s, x `elem` t]

where elem is a function in the Prelude that checks list membership for lists
over any type on which equality testing works:

elem :: Eq a => a -> [a] -> Bool

Butwhenusing lists to represent sets,weneed tobe awareof somedifferences
between lists and sets.

• All of the elements of a list have the same type, so we can’t represent sets
that have elements of different types, unless we define a type that includes
all the kinds of elements we need. That is sometimes possible, as you’ll see
later.

• The order of the elements in a list is significant, and lists may contain
repeated elements, unlike sets. But we canmimic the “no repeated elements”
property by using lists without repetitions. If the type of elements has a nat-
ural order, like < on Int, thenwe canmimic the “order doesn’tmatter” prop-
erty as well, by keeping the elements in ascending or descending order: then
both {1, 3, 2} and {3, 1, 2}—which are the same set, just written differently—
are represented by the same list, [1,2,3].

• Because the order of the elements in a list is significant, we can obtain the
first element of a list (its head) and the rest (its tail), and this is one of the
most important ways of computing with lists. That doesn’t make sense with
sets.

Exercises
1. Write a version of the function angleVectors from Chap. 3 that represents

two-dimensional vectors using the type (Float,Float).
2. Let’s represent a line with equation y = ax + b using the pair (a,b).

type Line = (Float,Float)

Write a function

Note that (Float,Float) in the
result represents the Cartesian
coordinates of a point, not a line.

intersect :: Line -> Line -> (Float,Float)

to find the coordinates of the intersection between two lines. Don’t worry
about the case where there is no intersection.

3. Using list comprehension, write a function

halveEvens :: [Int] -> [Int]

that returns half of each even number in a list. For example,

halveEvens [0,2,1,7,8,56,17,18] == [0,1,4,28,9]

4. Using list comprehension, write a function

inRange :: Int -> Int -> [Int] -> [Int]

that returns all numbers in the input list that fall within the range given by
the first two parameters (inclusive). For example,

inRange 5 10 [1..15] == [5,6,7,8,9,10]

https://doi.org/10.1007/978-3-030-76908-6_3

Exercises
41 5

5. Using list comprehension, write a function countPositives to count the
number of positive numbers in a list. For example, We will consider 0 to be a positive

number.countPositives [0,1,-3,-2,8,-1,6] == 4

Youwill probably want to use the length function in your definition. (Why
do you think it’s not possible to write countPositives using only list com-
prehension, without use of a function like length?)

6. Using list comprehension, write a function

multDigits :: String -> Int

that returns the product of all the digits in the input string. If there are no
digits, your function should return 1. For example,

multDigits "The time is 4:25" == 40
multDigits "No digits here!" == 1

You’ll need a library function to determine if a character is a digit, one to
convert a digit to an integer, and one to do the multiplication.

7. Using list comprehension, write an improved definition of the function

capitalise :: String -> String

that converts the first character in a string to upper case and converts the rest
to lower case. For example, capitalise "edINBurgH" == "Edinburgh".

8. Use a list comprehension to check whether the expression (a ∧ ¬b ∧ (c ∨
(d ∧ b))∨ (¬b∧ ¬a))∧ c (see page 29) is a tautology or not. You will need
to use the function and :: [Bool] -> Bool.

9. Dame Curious is a crossword enthusiast. She has a list of words that might
appear in a crossword puzzle, but she has trouble finding the ones that fit a
slot. Using list comprehension, write a function

crosswordFind :: Char -> Int -> Int -> [String] -> [String]

to help her. The expression

crosswordFind letter pos len words

should return all the items from words which (a) are of the given length
len and (b) have letter in position pos, starting counting with position 0.
For example, if Curious is looking for seven-letter words that have 'k' in
position 1, she can evaluate the expression

crosswordFind 'k' 1 7
["baklava", "knocked", "icky", "ukelele"]

to get ["ukelele"]. You’ll need a library function that returns the nth
element of a list, for a given n, and the function length.

10. Consider the following definition of the infinite list of all Pythagorean
triples:

pythagoreanTriples :: [(Int,Int,Int)]
pythagoreanTriples =

[(a,b,c) | a <- [1..], b <- [1..], c <- [1..],
aˆ2 + bˆ2 == cˆ2]

What is the problem with this definition? How might you improve it?

43 6

Features and Predicates
Contents

Logic – 44

Our Universe of Discourse – 44

Representing the Universe – 45

Things Having More Complex Properties – 47

CheckingWhich Statements Hold – 48

Sequents – 49

Exercises – 50

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_6

6

44 Chapter 6 · Features and Predicates

Logic

Human language is often ambiguous, verbose and imprecise, and its structure is
complex. Its ability to express layers and shades ofmeaningmakes it well-suited
to writing poetry, but not so good for applications that demand precision orAn example of a tricky English

sentence is “All that glitters is not
gold” (originally from The Merchant
of Venice by Shakespeare) which
appears to mean “Everything that
glitters isn’t gold” but really means
“Not all that glitters is gold”.

when simplicity is important.
You’re going to learn to use a language based on propositional logic for

describing features of things, making statements about them, and deciding
whether or not statements are true or false. Propositional logic is a very simple
form of logic where the focus is on ways of building up complex statements
from simpler ones using logical connectives including conjunction (∧, or && in
Haskell), disjunction (∨, or ||), and negation (¬, or not).

We’ll start with a simple world containing a fixed set of things and a fixed
vocabulary of features of those things, and where we know which things have
which features. Every statement that we’ll be able to make using our logical
language will have a precise meaning and will be either true or false.Our logical language is simple

enough that we’ll be able to decide
mechanically whether any statement
is true or false. That is, all statements
will be decidable. More complicated
logical languages don’t have that
property. See 7 https://en.wikipedia.
org/wiki/Decidability_(logic).

As you learn how to write statements in logic, you’ll also learn how to rep-
resent the world and statements about the world in Haskell. This will allow you
to compute whether a statement is true or false, saving you the trouble of work-
ing it out by hand—or at least, giving you an easy way to check the results of
your hand calculations—which can be hard work once things get complicated.
It also demonstrates how logic can be mechanised, which is essential for many
applications of logic in Informatics.

Later, we’ll look at aspects of logic that relate to all worlds, or to sets of
worlds that have something in common, rather than just to a particular world.
We’ll also “abstract away” from specific statements about the world, and focus
on ways of combining statements and on reasoning about the truth of complex
statements using knowledge of the truth of simpler statements. This gets to the
heart of logic as the science of pure reasoning: reasoning that doesn’t depend
on the subject matter.

Logic is a big subject that has many applications in Informatics, especially
in Artificial Intelligence. Sometimes the applications require a logical language
that’s much more complex than the simple one we’re going to study here, but
our language is the basis of all of these more complex systems. An example of
an aspect that could be added is the ability to reason about sequences of events
and about events that are possible (might happen) versus events that are nec-
essary (will definitely happen). And some varieties of logic involve more truth
values than true and false: for example, there could be a third value meaning

In fuzzy logic, a real number between
0 (completely false) and 1
(completely true) is used to express
the “degree of truth” of a statement.
See 7 https://en.wikipedia.org/wiki/
Fuzzy_logic.

“unknown”. You’ll learn about some of these things later, in courses covering
topics where logic is used.

Our Universe of Discourse

To start with, we need to know something about the domain that we’re going
to be talking about: what are the things? and what features of those things do
we want to talk about? In logic, this is called the universe of discourse. The word
“universe” suggest that it contains everything, but the universe of discourse is
limited to just the things that are of interest at the moment. The idea is to give
meaning to words like “everything” and “something”: “everything has property
P” means that all of the things in the universe of discourse have property P,
and “something has property P” means that there is at least one thing in the
universe of discourse that has property P. This is the same idea as the universe
that we use when taking the complement Ā of a set A. Without knowing what
universe we have in mind, we can’t form the set of everything that’s not in A.

https://en.wikipedia.org/wiki/Decidability_(logic)
https://en.wikipedia.org/wiki/Decidability_(logic)
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Fuzzy_logic

Representing the Universe
45 6

An example of a universe of discourse would be all of the people who are
matriculated students at the University of Edinburgh on 30 September 2021,
together with certain features of those people: age, eye colour, etc. We’re only
going to look at finite universes of discourse in this book. Our first universe An example of an infinite universe of

discourse is the set of real numbers.
A feature of things in this universe is
whether they are rational or
irrational. An example of a large but
finite universe is the set of all people
in China who were alive at
00:01 CST on 1 January 2020, with
features relating to their past and
present health.

of discourse will be very small, just nine things, all of which are shapes, either
triangles or discs. Each of these shapes is either small or big, and is either white
or black or grey. Here it is:

We canmake statements about the things in the universe of discourse. Some
are true, for example:

• Every white triangle is small.
• Some big triangle is grey.
• No white thing is black.

and some are false, for example:

• Every small triangle is white.
• Some small disc is black.

For this small universe, it’s easy to work out which statements are true, just by
looking at the picture. For bigger and more complicated universes, it might be
much harder.

We’re now going to look at how to represent our universe of discourse in
Haskell and how to turn such statements into Haskell code that will produce
the correct answer. The methods we use will work for any other finite universe,
so they’ll scale up to universes of any size and complexity.

Representing the Universe

The first step is to give names to the things in the universe. The names we use
don’t matter, but we need them to be able to refer to the things in Haskell. Here
goes:

6

46 Chapter 6 · Features and Predicates

Using these names, we can define a Haskell type of things, and a list of all
the things in the universe:

You need to include
“deriving (Eq,Show)” in the type
definition in order to use elem in the
definitions below, and to get the
results of expressions involving
values of type Thing to print out.
What this means and why you need it
will be explained later.

data Thing = R | S | T | U | V | W | X | Y | Z
deriving (Eq,Show)

things :: [Thing]
things = [R, S, T, U, V, W, X, Y, Z]

We’d actually like to use sets rather than lists for representing the universe of
discourse, since the order of the things in our lists isn’t significant. But Haskell’s
features for computing with lists are very convenient, so we’ll go ahead and use
them.

One way of describing the features of things in Haskell is by creating types
for the features—colours, shapes, sizes—and then defining functions that say
which things are triangles, which are grey, etc.

data Colour = White | Black | Grey
data Shape = Disc | Triangle
data Size = Big | Small

colour :: Thing -> Colour
colour R = Grey
...

shape :: Thing -> Shape
shape R = Disc
...

size :: Thing -> Size
size R = Small
...

This is an accurate way of representing features, but it’s hard to work with
because the features have different types. This makes the representation highly
dependent on what the features in the universe of discourse happen to be. So
let’s instead use predicates: Bool-valued functions for each value of each feature,
saying whether each thing has that value of that feature or not.

It’s convenient to start with a definition of Predicate as an abbreviation
for the type Thing -> Bool, but we’ll need predicates for other kinds of things
later, so we’ll define

type Predicate u = u -> Bool

instead. And then we can define the predicates:

Things Having More Complex Properties
47 6

isSmall :: Predicate Thing
isSmall x = x `elem` [R, S, V, X]

isWhite :: Predicate Thing
isWhite x = x `elem` [U, V]

...

There are seven of these predicates (isDisc, isTriangle, isWhite, isBlack,
isGrey, isBig, isSmall). They all have the same type, so this representation
is uniform and independent of the subject matter.

We can use Haskell’s logical connectives

not :: Bool -> Bool
(&&) :: Bool -> Bool -> Bool
(||) :: Bool -> Bool -> Bool

to help define the predicates. Once we have the definition of isSmall above,
we can define

isBig :: Predicate Thing
isBig x = not (isSmall x)

and once we’ve defined isWhite and isBlack, we can define

isGrey :: Predicate Thing
isGrey x = not (isWhite x) && not (isBlack x)

When applying a predicate to a thing x produces True, we say that x satisfies
the predicate.

Things Having More Complex Properties

Wecannowuse list comprehensions togetherwith the definitions above to com-
pute lists of things in our universe that have properties involving combinations
of features. For example, here’s the list of small triangles:

> [x | x <- things, isSmall x, isTriangle x]
[S,V,X]

or equivalently, using && to combine the two guards:

> [x | x <- things, isSmall x && isTriangle x]
[S,V,X]

and here’s the list of grey discs:

> [x | x <- things, isGrey x && isDisc x]
[R,Y]

We can also handle other ways of combining features, not just conjunction.
For example, here’s the list of things that are either big or triangles, or both:

> [x | x <- things, isBig x || isTriangle x]
[S,T,U,V,W,X,Y,Z]

which is different from the list of big triangles:

> [x | x <- things, isBig x && isTriangle x]
[T,W]

And here’s the list of discs that aren’t grey:

> [x | x <- things, isDisc x && not (isGrey x)]
[U,Z]

6

48 Chapter 6 · Features and Predicates

It’s easy to see that conjunction of features amounts to intersection, for
example, the list of small triangles

> [x | x <- things, isSmall x && isTriangle x]
[S,V,X]

is the intersection of the list of small things

> [x | x <- things, isSmall x]
[R,S,V,X]

and the list of triangles

> [x | x <- things, isTriangle x]
[S,T,V,W,X]

In the same way, disjunction of features corresponds to union.

Checking Which Statements Hold

We can now check statements about our universe of discourse to see whether
they are true or false.

To check that a property holds for everything, we need to check that it holdsIn English, use “every” or “all” and
be very careful with “any” whose
meaning depends on context:
compare “Can you do anything?”
with “I can do anything!”

for all of the things in the universe. We can check each of them individually,
and then take the conjunction of the results.

For example, consider the statement “Every small triangle is white”. We
compute the list of small triangles

> [x | x <- things, isSmall x && isTriangle x]
[S,V,X]

and then we look to see whether or not they are all white:

> [(x, isWhite x) | x <- things, isSmall x && isTriangle x]
[(S,False),(V,True),(X,False)]

We discover that S and X are small triangles that aren’t white, so the statement
is false. If we don’t care about the specific counterexamples, that conclusion
can be obtained more directly using the function and :: [Bool] -> Bool, like
so:

> and [isWhite x | x <- things, isSmall x && isTriangle x]
False

On the other hand, every white triangle is small:

> and [isSmall x | x <- things, isWhite x && isTriangle x]
True

Similarly, we check that a property holds for something by checking the
things in the universe and taking the disjunction of the results.

For example, consider the statement “Some big triangle is grey”. We com-
pute the list of big triangles

> [x | x <- things, isBig x && isTriangle x]
[T,W]

and then we look to see which ones are grey:

> [(x,isGrey x) | x <- things, isBig x && isTriangle x]
[(T,False),(W,True)]

Sequents
49 6

We see that W is a big grey triangle, so the statement is true. And again, we can
reach that conclusion more directly using the function or :: [Bool] -> Bool:

> or [isGrey x | x <- things, isBig x && isTriangle x]
True

But it’s not the case that some small disc is black:

> or [isBlack x | x <- things, isSmall x && isDisc x]
False

Sequents

Here is another way of saying that “Every white triangle is small” is true:

isWhite, isTriangle � isSmall is
pronounced “isWhite and
isTriangle satisfies isSmall”. The
symbol � is called a double turnstile.

isWhite, isTriangle � isSmall

This is an example of a sequent. The antecedents are listed before �, and the
succedents are listed after �. A sequent is valid if everything in the universe
of discourse that satisfies all of the antecedents satisfies at least one of the
succedents. We’ll start with examples where there’s just one succedent, which
makes things a little easier to understand.

If a sequent is invalid, we write it using the symbol �. For example:

isSmall, isTriangle � isWhite

This says that “Every small triangle is white” is false. That is, it’s not the case

� is pronounced “does not satisfy”.

that everything in the universe of discourse that satisfies both isSmall and
isTriangle will satisfy isWhite. Or equivalently, there’s something that sat-
isfies both isSmall and isTriangle but doesn’t satisfy isWhite.

Any or all of the antecedents and succedents can be negated. For example:

isWhite � ¬ isBlack

says that “Every white thing is not black” (or equivalently, “No white thing is
black”) is true. We use the mathematical symbol ¬, rather than not, because
with sequents we’re in the world of Mathematics rather than in Haskell. Also
because not isBlack would give a type error: not :: Bool -> Bool while
isBlack :: Predicate Thing.

There’s a subtle but very importantdifferencebetweennegationofpredicates
and a sequent that’s invalid, written using �. A sequent that’s valid expresses a
statement of the form “Every X is Y ”. If Y is of the form ¬Z, then we have
“Every X is not Z”, as in the last example, “Every white thing is not black”.

On the other hand, a sequent being invalid means that there’s at least one
thing that satisfies the antecedents but doesn’t satisfy any of the succedents:
“It’s not the case that every X is Y ”.

We can put negation of predicates and � together to express statements of
the form “Some X is Y ”. For example, recall the statement “Some big triangle Think about this and make sure that

you understand it! It’s a little
counterintuitive that expressing the
“positive” statement “Some X is Y”
requires two forms of negation. We’ll
need this later in Chap. 9, where
there is some more explanation, and
thereafter.

is grey”:

> or [isGrey x | x <- things, isBig x && isTriangle x]
True

That statement is equivalent to the statement “It’s not the case that all big
triangles are not grey”, which can be expressed:

isBig, isTriangle � ¬ isGrey

6

50 Chapter 6 · Features and Predicates

Exercises

1. Express the following statements in Haskell using the logical operations &&,
|| and/or not to combine the predicates defined above. Give the values of
the Haskell expressions and check that they are correct according to the
diagram.

• Every small disc is white.
• Some grey things are not discs.
• Every big triangle is either grey or black.
• Some grey triangle is not big.

2. The statement “No white thing is black” doesn’t fit either of the patterns
“Every X is Y ” or “Some X is Y ”. But it’s equivalent to a statement of the
form “It’s not the case that some X is Y ” and also to a statement of the
form “EveryX is notY ”. Give those two equivalent statements and express
them in Haskell using the logical operations &&, || and/or not to combine
the predicates defined above.

3. Most uses of the words “and”, “or” and “not” in English correspond
pretty closely to the meanings of the corresponding logical operations. For
instance, “R is grey and small” corresponds to isGrey R && isSmall R, and
“T is white or black” corresponds to isWhite T || isBlack T. But there are
some subtleties. Consider the sentence “T is not a black disc”. Express all of
the readings you can think of in Haskell, using the logical operations &&, ||
and/or not to combine the predicates defined above.

4. Explain why our method of translating sentences into Haskell gives the
correct answer in the following cases involving the empty list of big white
triangles:

• All big white triangles are black.
• No big white triangles are black.
• Some big white triangle is black.

5. Find two more statements of the form “Every X Y is Z” that are true, and
two more statements of the form “Some X Y is Z” that are false, for X , Y ,
and Z being combinations of predicates or negated predicates.

6. Express each of the following using a sequent:

• “Every big grey thing is a triangle” is false.
• “Something small is black” is true.
• “Some small disc is black” is false.

51 7

Testing Your Programs

Contents

Making Mistakes – 52

Finding Mistakes Using Testing – 53

Testing Multiple Versions Against Each Other –
54

Property-Based Testing – 54

Automated Testing Using QuickCheck – 55

Conditional Tests – 56

Test Case Generation – 57

Testing Polymorphic Properties – 58

Exercises – 58

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_7

7

52 Chapter 7 · Testing Your Programs

Making Mistakes

As you will have discovered by now, it’s easy to make mistakes in your function
definitions. Sometimes you won’t be paying enough attention. Sometimes your
fingers will type something different from what your brain intended. Nobody’s
perfect!

Fortunately,Haskell will detect some of yourmistakes automatically. These
include syntax and type errors as well as typos, like misspelled function names.

Should be “n <- ns”, not “ns -> n”.

Should be “odd n”, not “n odd”.

Typo in “odd n”.

sumSqOdds :: [Int] -> Int
sumSqOdds ns = sum [n*n | ns -> n, odd n]

sumSqOdd.hs:2:31: error: parse error on input ‘->’
Failed, modules loaded: none.

sumSqOdds :: [Int] -> Int
sumSqOdds ns = sum [n*n | n <- ns, n odd]

sumSqOdd.hs:2:37: error:
• Couldn't match expected type ‘(Integer -> Bool) -> Bool’

with actual type ‘Int’
• The function ‘n’ is applied to one argument,

but its type ‘Int’ has none
In the expression: n odd
In a stmt of a list comprehension: n odd

Failed, modules loaded: none.

sumSqOdds :: [Int] -> Int
sumSqOdds ns = sum [n*n | n <- ns, odf n]

sumSqOdd.hs:2:37: error:
• Variable not in scope: odf :: Int -> Bool
• Perhaps you meant ‘odd’ (imported from Prelude)

Failed, modules loaded: none.

You still have to figure out what the error message means, locate the mistake
in your code, and fix it. But having it pointed out to you automatically is a big
help.

Much more challenging is finding and fixing “thinkos”, like this one:According to the Oxford English
Dictionary, “thinko” is not an actual
word. But it should be.

allDifferent :: Int -> Int -> Int -> Bool
allDifferent a b c | a/=b && b/=c = True

| otherwise = False

This function is supposed to return Truewhen it is given three different numbers
as input. The problemhere is that, although equality is transitive (that is, if x==y
and y==z then x==z) inequality is not, meaning that the reasoning used when
writing the guard is wrong. So allDifferentwill sometimes incorrectly return
True when a==c.

Sometimes these are dumb mistakes, but ones that Haskell can’t detect
automatically. Sometimes they are more subtle, for example, when you mis-
understand some aspect of the problem you are trying to solve or you forget to
consider certain cases.

Finding Mistakes Using Testing
53 7

Finding Mistakes Using Testing

One way of finding thinkos is to test your function with sample inputs to see if
it does what you intended.

> allDifferent 1 2 3
True
> allDifferent 0 0 0
False
> allDifferent 1 1 0
False
> allDifferent 0 1 1
False
> allDifferent 1 0 1
True

The last test reveals that there is a mistake in the definition of allDifferent.
Sometimes you will be provided with information about how your function

should behave in response to certain sample inputs, and those inputs are then
obvious choices of test cases.

In general, a range of different test cases—rather than just a few tests that
are all similar to each other—is the best way to find mistakes. Make sure to test
boundary cases (the empty list, for functions on lists; 0, for functions on Int)
and cases that youmight not have considered as the primary ones (e.g. negative
numbers, strings that contain funny symbols instead of just letters).

If your problem involves searching for something in a data structure, say,
then try test cases where it is absent and cases where it is present more than
once, rather than just cases where it is present exactly once. If your function
produces a result of type Bool, then test inputs for which it should produce the
result False, not just inputs for which it should produce True. And if you can
manage it, try some very large test values.

It’s good practice to test your functions right away, as soon as you havewrit-
ten them. That way, when another function that builds on previously defined
functions gives an unexpected result, you know to look for the mistake in the
new code rather than in the previous function definitions. It’s a lot easier to

Test-driven development is a popular
software engineering approach that
advocates writing down the test cases
even before you write the code! See
7 https://en.wikipedia.org/wiki/Test-
driven_development.

find mistakes when you can focus attention on a small chunk of code. It’s also
easier to remember what youwere thinking when the code is fresh in yourmind.
On the other hand, sometimes you won’t be able to find a mistake after staring
at the code for ages. And looking for a bug shortly after you created it means
that you might still be suffering from the same misapprehension that led you
to make the mistake. In that case it might be best to come back later for a fresh
look after a break.

Finally, when you change the definition of a function that you have already Re-running tests to ensure that
previously tested code still works
after a change is called regression
testing.

tested, it’s a good idea to re-run theprevious tests tomake sure that your changes
haven’t broken anything.

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

7

54 Chapter 7 · Testing Your Programs

Testing Multiple Versions Against Each Other

One way to achieve considerable confidence that your code is correct is to write
two versions—perhaps using two different algorithms, or produced by different
people—and then test that both versions produce the same result. If there is a
discrepancy, then at least one of the versions is wrong.

Triple modular redundancy—where
three sub-systems independently
compute a result and the final result
is produced by majority voting—is a
technique used in fault-tolerant
systems to deal with potential
sub-system failure, see 7 https://en.
wikipedia.org/wiki/
Triple_modular_redundancy. Using
just two doesn’t work because you
don’t know which one is wrong in
case the results differ. Sometimes
more than three sub-systems are
used: Charles Darwin’s ship HMS
Beagle carried 22 chronometers!

Writing two versions of every function definition doubles the work so it is
not very practical as a general rule. One case where it is practical is in a situation
where a particularly efficient implementation of some function is required. As
you will see later, efficiency in software often comes at the cost of simplicity. So
more efficient code is likely to be more complicated and harder to understand,
and it is more likely to contain mistakes.

» There are two ways of constructing a software design: One way is to make it so
simple that there are obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficiencies.
C.A.R. Hoare, 1980 Turing Award winner

In the rare situation where efficiency is important, a good way to achieve
both correct and efficient code is to proceed as follows:

1. Write the simplest possible definition of the function;
2. Check that it is correct. Simple code is easier to understand and usually has

fewer cases that need to be checked separately;
3. Write a more efficient version of the same function; and
4. Test that the more efficient version produces the same results as the simple

version.

Property-Based Testing

Away to achieve some of the advantages of testing multiple versions of a func-
tion definition against each other without doing everything twice is to instead
think of properties that your function should satisfy, and use testing to check
whether or not they hold.

One example of a property of sumSqOdds above is that its result should
always be less than or equal to the sum of the squares of the numbers in its input
list, not just the odd ones. Another is that its result will be odd (resp. even) if an
odd (resp. even) number of the values in its input list are odd. Finally, suppose
that we do have a different version of sumSqOdds, for example:

sumSqOdds' :: [Int] -> Int
sumSqOdds' ns = sum (squares (odds ns))

then always producing the same result as sumSqOdds' is an important property
of sumSqOdds.

Thinking about properties—what the function should compute—is quite a
different activity from thinking about how to compute it. Thinking of the same
problem from a different angle, as with testing multiple versions of a function
definition against each other, is a good way of exposing gaps in your thinking.

If you code the properties as Haskell functions, you can test them, rather
than just thinking about them. Here are Haskell versions of the properties
above:

sumSqOdds_prop1 :: [Int] -> Bool
sumSqOdds_prop1 ns = sumSqOdds ns <= sum (squares ns)

sumSqOdds_prop2 :: [Int] -> Bool
sumSqOdds_prop2 ns = odd (length (odds ns)) == odd (sumSqOdds ns)

https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Triple_modular_redundancy

Automated Testing Using QuickCheck
55 7

sumSqOdds_prop3 :: [Int] -> Bool
sumSqOdds_prop3 ns = sumSqOdds ns == sumSqOdds' ns

If you compare two functions and discover that they are different, you need
to figure out which of the two functions is wrong. Or if you test a property and
discover that it doesn’t hold, you need to figure out whether the mistake is in
the code or in the property.

An example of a mistake in a property is the following version of
sumSqOdds_prop1, where “less than or equal” has been incorrectly coded using
the < relation:

sumSqOdds_prop1' :: [Int] -> Bool
sumSqOdds_prop1' ns = sumSqOdds ns < sum (squares ns)

This property will fail for a correct implementation of sumSqOdds on any list
containing no non-zero even numbers, such as the empty list.

Automated Testing Using QuickCheck

If you test a few cases, you gain some confidence that your code is correct.
Testing more cases gives you more confidence. If you could test all cases then
you could be very confident, but unfortunately that is usually impossible unless
the domain of possible inputs is finite and relatively small. Still, more testing is Values of type Int occupy 32 or 64

bits, so any function on Int has a
finite domain of possible inputs. But
since 232 = 4294967296 and
264 = 18446744073709551616, it is
infeasible to test them all.

better than less testing, and if possible it should be done on as many different
kinds of inputs as possible.

Fortunately, Haskell makes it easy to do lots of testing. Haskell’s
QuickCheck library module provides tools for testing properties that have been
coded as Haskell functions on 100 automatically generated random inputs.

After importing QuickCheck

import Test.QuickCheck

we can test the above properties of sumSqOdds using the function quickCheck: Notice that the library module is
called QuickCheck, with an upper
case Q, but the function is called
quickCheck!

> quickCheck sumSqOdds_prop1
+++ OK, passed 100 tests.
> quickCheck sumSqOdds_prop2
+++ OK, passed 100 tests.
> quickCheck sumSqOdds_prop3
+++ OK, passed 100 tests.
> quickCheck sumSqOdds_prop1'
*** Failed! Falsifiable (after 1 test):
[]

To do more tests, run quickCheck repeatedly, or increase the number of
tests it does:

> quickCheck sumSqOdds_prop3
+++ OK, passed 100 tests.
> quickCheck sumSqOdds_prop3
+++ OK, passed 100 tests.
> quickCheck sumSqOdds_prop3
+++ OK, passed 100 tests.
> quickCheck (withMaxSuccess 1000000 sumSqOdds_prop3)
+++ OK, passed 1000000 tests.

When quickCheck encounters a failing test case, it reports the inputs on
which the test fails:

7

56 Chapter 7 · Testing Your Programs

allDifferent_prop :: Int -> Int -> Int -> Bool
allDifferent_prop a b c

| allDifferent a b c
= a/=b && a/=c && b/=a && b/=c && c/=a && c/=b

| otherwise = a==b || a==c || b==a || b==c || c==a || c==b

> quickCheck allDifferent_prop
*** Failed! Falsifiable (after 31 tests and 2 shrinks):
27
0
27

Before reporting a failing test case, quickCheck will first try to “shrink”
it to find a similar but smaller failing test case. This is useful because smaller
and simpler counterexamples are simpler to analyse than the possibly more
complicated counterexample that quickCheck happened to encounter.

Without doing exhaustive testing of all input values, testing can only everHaskell’s SmallCheck library module
(7 https://hackage.haskell.org/
package/smallcheck) does exhaustive
testing of properties for all test cases
up to a given size.

reveal mistakes, never guarantee correctness. So, quickCheck not finding a
mistake doesn’t mean that there aren’t any.

> quickCheck allDifferent_prop
*** Failed! Falsifiable (after 5 tests and 1 shrink):
-3
0
-3
> quickCheck allDifferent_prop
+++ OK, passed 100 tests.

In the second run of quickCheck, we were lucky (that is, unlucky): it didn’t
happen to generate any failing test cases.

Conditional Tests

Sometimes you need to restrict the test cases that quickCheck generates to a
subset of the values of the parameter type. This might be necessary to avoid
testing your function on inputs for which it was not intended to produce a
sensible result.

For example, given a number n and an approximation r to
√
n, the Newton−

Raphson method computes a closer approximation:
The Newton−Raphson method is
named after the British
mathematician and scientist Isaac
Newton (1642−1727) and the British
mathematician Joseph Raphson
(c. 1648−c. 1715), but its essence is
much older, see 7 https://en.
wikipedia.org/wiki/
Newton’s_method.

newton :: Float -> Float -> Float
newton n r = (r + (n / r)) / 2.0

Iterating will eventually converge to
√
n.

Suppose that we want to test that newton n r is indeed closer to
√
n than r

is. To avoid attempting to find the square root of a negative number, we need
to restrict attention to n ≥ 0, and then it is sensible to restrict to r > 0 as well,
excluding r = 0 to avoid division by zero. We can write this conditional test
using the operator ==>:The symbol ==> is meant to suggest

logical implication. newton_prop :: Float -> Float -> Property
newton_prop n r =

n>=0 && r>0 ==> distance n (newton n r) <= distance n r
where distance n root = abs (rootˆ2 - n)

Testing this property using quickCheck easily finds cases where it isn’t sat-
isfied, since the Newton−Raphson method performs poorly when the chosen
approximation to the square root is too far from the actual square root:

> quickCheck newton_prop
*** Failed! Falsifiable (after 32 tests and 6 shrinks):
3.0
0.1

https://hackage.haskell.org/package/smallcheck
https://hackage.haskell.org/package/smallcheck
https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Newton's_method

Test Case Generation
57 7

Note that the result of a conditional test has type Property, rather than Bool,
but quickCheck works for that type too.

Test Case Generation

QuickCheck knows how to automatically generate random test values for
Haskell’s built-in types. You need to tell it how to generate test values for
types that you define yourself.

For example, consider this type definition from Chap. 2:

data Weekday = Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday

deriving Show

Here is an example of a function that takes an input of type Weekday:

You need to include
“deriving Show” to allow
quickCheck to print out failing test
cases.isSaturday :: Weekday -> Bool

isSaturday Saturday = True
isSaturday _ = False

and a simple test for isSaturday:

isSaturday_prop :: Weekday -> Bool
isSaturday_prop d = not (isSaturday d)

Attempting to run this test using quickCheck fails:

> quickCheck isSaturday_prop
<interactive>:2:1: error:

• No instance for (Arbitrary Weekday)
arising from a use of ‘quickCheck’

• In the expression: quickCheck isSaturday_prop
In an equation for ‘it’: it = quickCheck isSaturday_prop

If we first declare a QuickCheck generator for Weekday:

Don’t try to understand this
declaration at this point! It uses a
feature of Haskell (“type classes”)
that won’t be covered until Chap. 24.
But feel free to follow the same
scheme to get a QuickCheck
generator for other types that are
defined by enumerating their values.

instance Arbitrary Weekday where
arbitrary = elements [Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday]

then quickCheck runs the test, but (of course) finds an input on which it fails:

> quickCheck isSaturday_prop
*** Failed! Falsifiable (after 2 tests):
Saturday

Later on you’ll learn how to define new types in Haskell that are more com-
plicated than Weekday. Getting QuickCheck to generate tests for these goes
into territory that is beyond the scope of this book. See the QuickCheckmanual
(7 http://www.cse.chalmers.se/~rjmh/QuickCheck/manual_body.html#13) and Another useful source of information

on QuickCheck is the blog post in
7 https://begriffs.com/posts/2017-
01-14-design-use-quickcheck.html.

the extensive comments in the QuickCheck code (7 https://hackage.haskell.org/
package/QuickCheck-2.14/docs/src/Test.QuickCheck.Arbitrary.html) for relevant
information.

It’s also possible to tweak the way that QuickCheck generates test cases for
built-in types, for example, to change the distribution of long inputs versus
short inputs. The way that QuickCheck attempts to shrink failing test cases is
also customisable.

http://www.cse.chalmers.se/~rjmh/QuickCheck/manual_body.html#13
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html
https://hackage.haskell.org/package/QuickCheck-2.14/docs/src/Test.QuickCheck.Arbitrary.html
https://hackage.haskell.org/package/QuickCheck-2.14/docs/src/Test.QuickCheck.Arbitrary.html

7

58 Chapter 7 · Testing Your Programs

Testing Polymorphic Properties

Testing polymorphic properties with QuickCheck is an important special case.
Consider commutativity of the polymorphic function ++, which obviously
doesn’t hold:

append_prop :: Eq a => [a] -> [a] -> Bool
append_prop xs ys = xs ++ ys == ys ++ xs

But QuickCheck doesn’t catch the problem:

> quickCheck append_prop
+++ OK, passed 100 tests.

This shows that, although QuickCheck is able to test polymorphic properties,
the test values it generates are insufficient to catch even obvious mistakes.

You might think that polymorphic properties should be tested for values
of many different types, in order to catch errors that might arise for one type
but not another. But since polymorphic functions behave uniformly for all
type instances, there’s no need to test them on different types. It suffices to test
polymorphic properties for Int or some other infinite type:Testing with types having small

numbers of values is not appropriate.
For example,
append_prop :: [()] -> [()] ->
Bool holds, where () is the type of
0-tuples, having the single value ().

append_prop' :: [Int] -> [Int] -> Bool
append_prop' xs ys = xs ++ ys == ys ++ xs

QuickCheck quickly finds a counterexample:

> quickCheck append_prop'
*** Failed! Falsified (after 3 tests and 1 shrink):
[0]
[1]

Exercises

1. If you can remember any of the mistakes you made when solving exercises
in previous chapters, formulate some test cases that would have revealed
them.

2. Write and run tests to check that reversing a list of type[Int] twice produces
the same list. Think of a property that relates reverse and ++, and test that
it holds for lists of type [Int].

3. Recall the function max3 from Chap. 3:

max3 :: Int -> Int -> Int -> Int
max3 a b c

| a>=b && a>=c = a
| b>=a && b>=c = b
| otherwise = c

Write and run a test to check that the result of max3 is always greater than
or equal to all of its inputs. Then replace all occurrences of >= in max3 with
> and re-run your test to see if that change introduces a problem.

4. Write and run tests to check whether Haskell’s integer addition and multi-
plication are commutative and associative, and whether integer arithmetic
satisfies (m + n) − n = m and (m ∗ n)/n = m. Check which of these testsSee 7 https://en.wikipedia.org/wiki/

Floating-point_arithmetic for
information about accuracy
problems with floating-point
arithmetic.

fail for floating-point arithmetic.
5. Exercise 5.2 asks you to write a function

intersect :: Line -> Line -> (Float,Float)

to compute the coordinates of the intersectionbetween two lines.Write a test
to check that the intersection of two lines is on both lines. Use quickCheck

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic

Exercises
59 7

to check if your solution for intersect passes these tests. Does anything
go wrong? Can you improve your test to avoid the problem?

6. The following function from Chap. 5 capitalises a word:

import Data.Char
capitalise :: String -> String
capitalise "" = ""
capitalise (c:cs) = (toUpper c) : cs

Write tests to check that:

• The first character of the result is upper case, using isUpper from the
Data.Char library module.

• The length of the input is the same as the length of the result.
• The characters in the input are the same as the characters in the result,

if case is disregarded. (You will probably want to use the list indexing
function !!.)

You may need to use conditional tests. (For which properties?)
Use quickCheck to check if capitalise passes these tests. Does anything
go wrong? Can you improve your tests to avoid the problem?
In Exercise 5.7, you wrote an improved version of capitalise. Use the
same tests to check that version. Any new problems?

61 8

Patterns of Reasoning

Contents

Syllogisms – 62

Relationships Between Predicates – 62

A Deductive Argument – 63

Negated Predicates – 65

Contraposition and Double Negation – 66

More Rules – 67

Exercises – 68

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_8

8

62 Chapter 8 · Patterns of Reasoning

Syllogisms

Now that you know how to use logic for making statements about things and
how to check whether or not a given statement is true, the next step is to study
patterns of reasoning that allow true statements to be combined to give other
statements that are guaranteed to be true. We’ll start with ideas that go all the
way back to Aristotle, the founder of logic, who looked at simple patterns ofAristotle (384−322 BC) was the

founder of the western tradition of
logic. The study of logic started
earlier in India, see 7 https://en.
wikipedia.org/wiki/Indian_logic, and
its study in China started around the
same time as Aristotle, see 7 https://
en.wikipedia.org/wiki/
Logic_in_China.

logical argument with two premises and a conclusion, called syllogisms. The
study of the sound syllogisms and the relationships between them dominated
the subject for the next 2000 years.

Nowadays, using the modern notation of symbolic logic, we can express
what scholars were studying for all this time in a much simpler way, and see
it as a straightforward combination of a couple of simple ideas. Since we’re
not historians, the point of looking at syllogisms isn’t to learn about Aristotle
and the history of logic. Rather, it’s to learn those simple ideas and how they
fit together, as a starting point for studying the rest of symbolic logic, and to
demonstrate the power of a good notation.

Relationships Between Predicates

Recall that a predicate is a Bool-valued function p that says whether any given
thing x in the universe has the given property (p x is True) or not (p x is False).
An example in Chap. 6 was isGrey, which is True for all grey things.

Each predicate p determines a subset of the universe of discourse containing
all of the things in the universe that satisfy the predicate, {x ∈ Universe | p x}.
(To avoid boring clutter we’ll write this as {x | p x}, leaving the requirement
that x ∈ Universe implicit.)

Wedraw these sets in aVenndiagramas circles, labelledwith the nameof the
predicate, to show relationships between predicates. The different regions in the
diagram represent subsets where different combinations of predicates are true.
In a Venn diagram with two circles, we can depict four combinations: a and b
are both true; a is true but b is false; a is false but b is true; a and b are both false.

(The region that’s outside both of the circles represents the subset of the universe
in which a and b are both false.) With three circles we get eight combinations:

https://en.wikipedia.org/wiki/Indian_logic
https://en.wikipedia.org/wiki/Indian_logic
https://en.wikipedia.org/wiki/Logic_in_China
https://en.wikipedia.org/wiki/Logic_in_China
https://en.wikipedia.org/wiki/Logic_in_China

A Deductive Argument
63 8

An Euler diagram is a similar way of drawing relationships between predi- Euler is pronounced “oiler”.
Leonhard Euler (1707−1783) was the
most prolific mathematician in
history. See 7 https://en.wikipedia.
org/wiki/Leonhard_Euler.

cates, where regions that are empty are omitted. For example:

This diagram says that everything that satisfies a also satisfies b. In other words,
every a is b.

We can represent the same situation with a Venn diagram, using the con-
vention that a region that’s coloured grey is empty. For example:

This diagram says that there’s nothing in the universe that satisfies a that doesn’t
also satisfy b, since the region where a is true and b is false is empty.

The same thing can be written in symbols using sequent notation (Chap. 6)
as a � b: everything in the universe of discourse that satisfies the antecedent
a will satisfy the succedent b. Good diagrams are intuitively appealing, but
symbolic representations are powerful because they can easily be manipulated
using standard techniques like substitution for variables.

A Deductive Argument

Let’s look at a simple deductive argument. Suppose that every a is b, and every b
is c. Can we then conclude that every a is c? Here’s a concrete example. Suppose
that every professor is a genius, and that every genius is arrogant. Can we
conclude that every professor is arrogant?

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Leonhard_Euler

8

64 Chapter 8 · Patterns of Reasoning

We can represent the assumptions as Venn diagrams like this:

Laying those two diagrams on top of each other, and then focusing on the
part with just a and c, we can see that every a must be c because the a ∧ ¬c
region of the diagram is coloured grey:

The same argument can be drawn very simply as an Euler diagram like this:

This diagram can be translated into symbols as follows:

{x | a x} ⊆ {x | b x} ⊆ {x | c x} implies {x | a x} ⊆ {x | c x}
which reveals the argument as following directly from transitivity of the subset
relation.

Negated Predicates
65 8

It can also be written symbolically using sequents as a rule, like so: Medieval monks studying logic
called this rule “Barbara”, not in
commemoration of Saint Barbara’s
logical skills but as part of a
mnemonic scheme for keeping track
of syllogisms.

a � b b � c Barbara
a � c

In any sound rule, if all of the statements above the line (the premises) are
true, for any predicates a, b, and c and any universe, then the statement below
the line (the conclusion) is true as well. (“Barbara” on the right is just the name
of the rule.) This rule is indeed sound, as the explanations via Venn and Euler
diagrams have shown. It can therefore be used to validate arguments in any
universe—for example, one in which all professors are geniuses and all geniuses
are arrogant—and for any choice of predicates. In that sense, it’s an abstract
pattern of reasoning that’s independent of the subject matter.

Since rules that are unsound aren’t useful, writing a rule is generally intended
as an assertion that it’s sound. As you’ll see, more complicated arguments can
be constructed by putting together such rules.

Negated Predicates

The fact that negation of a predicate corresponds to the complement of the set
that it determines is built into Venn diagram and Euler diagram notation. We
can prove the same fact in symbols, once we define the negation of a predicate
a as (¬a) x = ¬(a x):

{x | (¬a) x} = {x | ¬(a x)} = {x | a x}
Let’s now consider the Barbara rule with a negated predicate ¬c in place of The monks called this rule

“Celarent”. (You don’t need to
remember these rule names, except
for Barbara, which is the simplest
one.)

c:
a � b b � ¬c

a � ¬c
An example in English is the following. Suppose that every snake is a reptile,
and that every reptile has no fur (or, equivalently, that no reptile has fur). We

There is often more than one way to
say things. “Every x is not y” has the
same meaning as “No x is y”.

can then conclude that every snake has no fur (or, equivalently, that no snake
has fur).

This rule is sound because the Barbara rule was sound for any choice of c.
The negation of a predicate is also a predicate, and is therefore a perfectly cro-
mulent choice. You can also see that it’s sound from the corresponding Euler
diagram:

a b c

or using Venn diagrams:

8

66 Chapter 8 · Patterns of Reasoning

a
b b

c

a

b

c

a c

but since it’s just an instance of another sound rule, no separate explanation is
required.

This is a case where the notation makes things easier. For Aristotle and
medieval scholars, these were two completely different syllogisms, because they
used different words to write them down—every b is c versus no b is c—but for
us, they’re the application of the same rule to different predicates. It’s obvious
that substituting¬c for c in a sound rule gives another sound rule, but the expla-
nations of soundness via Euler and Venn diagrams both look quite different
from the corresponding explanations for the original rule.

Contraposition and Double Negation

Another important rule of logic is the contraposition rule:

a � b contraposition¬b � ¬a

An English example is the following. Suppose that every human is a mammal.
We can then conclude that every non-mammal is a non-human (or, equiva-
lently, that no non-mammal is a human). The sequent ¬b � ¬a is called the
contra-positive of the sequent a � b.

The soundness of the contraposition rule is shown using Venn diagrams as
follows:

a b

b a

More Rules
67 8

The second diagram is the mirror image of the first diagram. It says that every-
thing that’s not b—that is, everything in the universe that isn’t in the circle for
b—is not a, since the part that’s in the circle for a is empty.

Now, we’ve already seen that negation of a predicate corresponds to the
complement of the set that it determines. Since ¯̄A = A, it follows that double
negation of a predicate gives the same predicate. This is the double negation law:

¬¬a = a

Using the double negation law, we can show that turning the contraposition

Intuitionistic logic is a weaker system
of logic than classical logic, which is
the system we are studying, in which
neither the double negation law nor
the method of proof by contradiction
is accepted, see 7 https://en.
wikipedia.org/wiki/
Intuitionistic_logic.

rule upside-down also gives a sound rule:

¬b � ¬a contraposition¬¬a � ¬¬b double negation, twice
a � b

When a rule is sound in both directions—that is, the conclusion follows from
the premise, and the premise also follows from the conclusion—the rule is called
an equivalence and is written using a double bar, like so:

a � b
contraposition

¬b � ¬a

More Rules

Other sound rules can be obtained from the contraposition rule by substituting
negated predicates and using the double negation law. For example, replacing
the predicate b in the contraposition rule by its negation ¬b and then applying
the double negation law gives:

a � ¬b contraposition¬¬b � ¬a double negation
b � ¬a

In English, this says that if no a is b, then no b is a. (Concrete example: Suppose
that no cats are green. Then nothing green is a cat.) And this rule is also sound
in both directions:

a � ¬b

b � ¬a
Here’s another example, obtained from the Celarent rule:

a � b

c � ¬b contraposition¬¬b � ¬c double negation
b � ¬c Celarent

a � ¬c

and a concrete example is: Suppose that all humans are mammals, and that no
reptiles are mammals. Then no humans are reptiles.

A valid combination of sound rules, which can be as complicated as you
want, is called a proof. It shows that the conclusion at the “bottom” of the
proof follows from the set of premises along the “top” of the proof. This can

https://en.wikipedia.org/wiki/Intuitionistic_logic
https://en.wikipedia.org/wiki/Intuitionistic_logic
https://en.wikipedia.org/wiki/Intuitionistic_logic

8

68 Chapter 8 · Patterns of Reasoning

be expressed as a new rule, removing all of the detail of the proof between the
premises and the conclusion. The proof above yields the rule

The monks called this rule “Cesare”.
a � b c � ¬b

a � ¬c

Any combination of sound rules will yield a rule that’s guaranteed to be
sound, so no explanation of soundness via Venn diagrams or Euler diagrams
is required. If all of the rules involved in the proof are equivalences, then the
result is an equivalence.

Other rules can be derived by combining the ones above in other ways.

Exercises

1. Consider the following Euler diagram, where every region is non-empty:

a

b
c

Which of the following sequents is valid: a � b, b � c, b � a, a � c, c � a,
a � ¬b, b � ¬c, b � ¬a, a � ¬c, c � ¬a.

2. Use the contraposition rule and the double negation law to show that the
following rule is sound:

¬a � b

¬b � a
Use Venn diagrams to show that this rule is sound, and give an English
example of its application.

3. Derive the following rules from the Cesare rule using contraposition and
double negation, and give English examples of their application.

a � b c � ¬b Camestres
c � ¬a

a � b b � ¬c Calemes
c � ¬a

U

Y

Z

R

S

W

T

X

V

4. Give counterexamples to show that the following three rules are unsound.
(Hint:There are counterexamples for all of these in the universe of discourse
of Chap. 6.)

a � b
b � a

a � b a � c
a � ¬b

a � c b � c
c � b

5. (This exercise and the next one use the Haskell implementation of the uni-
verse of discourse of Chap. 6, which defines the list things :: Thing and
predicates like isGrey :: Predicate Thing.)

Exercises
69 8

Define an infix function

U

Y

Z

R

S

W

T

X

V

(|=) :: Predicate Thing -> Predicate Thing -> Bool

for testing whether a sequent involving one antecedent and one succedent
is valid or invalid. Use it to check that isWhite � isBlack.
Define another infix function

(||=) :: [Predicate Thing] -> Predicate Thing -> Bool

for testing whether a sequent involving a list of antecedents and one succe-
dent is valid or invalid.Use it to check thatisWhite,isTriangle�isSmall
and that isSmall, isTriangle � isWhite.

6. Recall that the type Predicate u is defined as u -> Bool. The following
function negates a predicate:

neg :: Predicate u -> Predicate u
(neg a) x = not (a x)

Forexample,(negisWhite)R=not(isWhiteR)=True.AndisWhite|=negisBlack
produces True.
Define functions

(|:|) :: Predicate u -> Predicate u -> Predicate u
(&:&) :: Predicate u -> Predicate u -> Predicate u

that compute the disjunction and conjunction of two predicates. Which of
the following produce True?

• isBig &:& isWhite |= isDisc
• isBig &:& isDisc |= isWhite
• isSmall &:& neg isGrey |= neg isDisc
• isBig |:| isGrey |= neg isTriangle
• neg (isTriangle |:| isGrey) |= isDisc
• neg isTriangle &:& neg isGrey |= isDisc

71 9

More Patterns of Reasoning

Contents

Denying the Conclusion – 72

Venn Diagrams with Inhabited Regions – 73

Contraposition Again – 74

Checking Syllogisms – 74

Finding Counterexamples – 76

Symbolic Proofs of Soundness – 77

Deriving All of the Sound Syllogisms – 78

Exercises – 79

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_9

9

72 Chapter 9 ·More Patterns of Reasoning

Denying the Conclusion

So far you’ve seen how to use rules to combine valid sequents into simple
deductive arguments about statements of the form “every a is b”. Sometimes
the antecedents and/or consequent of a sequent involved negation, to allow
statements like “every a is not b”. You’re now going to learn how to build
arguments that also take account of invalid sequents, which relies on a different
kind of negation. This provides new ways of reasoning, as well as allowing
arguments about existence of things that satisfy predicates (“some a is b”).

Let’s start by looking at a simple example of commonsense reasoning.
We’ll start by making an underlying assumption that Fiona is old enough to
buy alcohol. Here’s a sound deduction, according to current laws in Scotland
relating to buying alcohol in a supermarket, expressed in the form of a rule:The relevant law is the Licensing

(Scotland) Act 2005, see 7 http://
www.legislation.gov.uk/asp/2005/16/
contents.

Fiona is in Scotland The time is between 10am and 10pm

Fiona can legally buy alcohol

It’s legal to buy alcohol at any time of the day in some countries, but not in
Scotland. And there are other countries where the sale of alcohol is illegal at
any time.

Now, supposewe know that Fiona is in Scotland and that Fiona can’t legally
buy alcohol.What canwe conclude from that?Well, then itmust not be between
10am and 10pm: if it were between those times, the rule would apply and then
the conclusion would contradict the fact that Fiona can’t legally buy alcohol.

On the other hand, suppose that the time is between 10am and 10pm and
that nevertheless Fiona can’t legally buy alcohol. From that, it follows by the
same reasoning that Fiona must not be in Scotland.

So from a deduction that we know to be sound, we can get two more sound
deductions, by denying the conclusion: one using the first premise and one usingThis is also known as proof by

contradiction. the second premise. In this case, we get the two deductions

Fiona is in Scotland Fiona can’t legally buy alcohol

The time isn’t between 10am and 10pm

The time is between 10am and 10pm Fiona can’t legally buy alcohol

Fiona isn’t in Scotland
Now, let’s look at the same pattern but using rules with sequents written

using predicates.
We already know that the following rule is sound:

a � b b � c Barbara
a � c

Suppose that we know that a � b (“every a is b”) and a � c (“some a is not
c”). Since the rule is sound, one of the premises is valid and the conclusion is
invalid, we know that the other premise must be invalid, so b � c (“some b is
not c”). Here it is as a rule:

a � b a � c
b � c

The same thing works applied to the other premise of the rule: if b � c and
a � c, then a � b.

b � c a � c
a � b

What we’re doing here is related to the way that the contraposition rule

a � b
contraposition

¬b � ¬a

http://www.legislation.gov.uk/asp/2005/16/contents
http://www.legislation.gov.uk/asp/2005/16/contents
http://www.legislation.gov.uk/asp/2005/16/contents

Venn Diagrams with Inhabited Regions
73 9

was used earlier, but at a different level: instead of negating and switching
antecedents and succedents of sequents, we’re negating (i.e. asserting as invalid)
and switching assumptions and conclusions of rules.

Venn Diagrams with Inhabited Regions

We’ve already seen how to draw aVenn diagram to represent a � b (every a is b):

a b

where regions are coloured grey to say that they are empty.
We’ll put an x in a region to indicate that it contains at least one thing (that

is, it’s inhabited). For example:

a b

x

This diagram says that there’s at least one thing in the universe that satisfies a
but not b. That is, a � b (some a is not b). A region is inhabited if and only if it’s
not empty, which explains why this diagram says that the sequent represented
by the previous diagram is invalid: it’s not the case that every a is b.

Using the same ideas, we can represent a � ¬b (no a is b):

a b

Since the diagram is symmetric, it
also represents b � ¬a (no b is a).

and a � ¬b (some a is b):

a b

x

And this symmetric diagram also
represents b � ¬a (some b is a).

9

74 Chapter 9 ·More Patterns of Reasoning

Again, comparing with the previous diagram, this one says that the sequentThese four sequents are Aristotle’s
categorical propositions. They are
traditionally arranged in the
following square of opposition with
contradictory sequents along the
diagonals:

represented by that diagram is invalid: it’s not the case that no a is b.

See 7 https://en.wikipedia.org/wiki/
Square_of_opposition.

Contraposition Again

The contraposition rule thatwe sawearlier alsoholdswhen the sequent is invalid:

a � b contraposition¬b � ¬a

In English, this says that if some a is not b, then something that’s not b is a. A
concrete example is: Suppose that some mice are not small. Then some things
that are not small are mice.

Let’s think about whether thismakes sense. The assumption says that there’s
at least one mouse that isn’t small: let’s call it Squeaky. Now, since Squeaky is
a mouse, and isn’t small, the conclusion does indeed hold: something that isn’t
small—namely, Squeaky—is a mouse.

The soundness of this version of the contraposition rule can be shown using
Venn diagrams:

a bx

b ax

The first diagram represents a � b: some a is not b. As in the proof of soundness
of the original version of contraposition, the second diagram is just the mirror
image of the first diagram. It says that the subset of the universe that’s not in
b but is in a is not empty. If it were empty, then we would have ¬b � ¬a, so
instead we have ¬b � ¬a. The x in the diagram corresponds to Squeaky the
mouse in our informal explanation of the rule.

As before, we can use the double negation law to show that contraposition
for invalid sequents works in both directions:

¬b � ¬a contraposition¬¬a � ¬¬b double negation, twice
a � b

and so we can write it using a double bar:

a � b
contraposition

¬b � ¬a

Checking Syllogisms

Let’s consider the following argument:

• No b is c.
• Some c is a.
• Therefore, some a is not b.

https://en.wikipedia.org/wiki/Square_of_opposition
https://en.wikipedia.org/wiki/Square_of_opposition

Checking Syllogisms
75 9

An example in English is:

• No dogs are insects.
• Some insects are yucky.
• Therefore, there is something yucky that is not a dog.

Is this a valid argument?
Let’s start by writing the argument in the form of a rule, using sequents:

b � ¬c c � ¬a
a � b

We can try to show that this rule is sound, meaning that the argument is valid,
using Venn diagrams. The procedure is similar to what we did before, but the
presence of invalid sequents, corresponding to Venn diagrams with inhabited
regions, makes things a little more complicated.

As before, we can represent the assumptions as Venn diagrams:

b
c a cx

and then laying those two diagrams on top of each other gives the following:

b
c a cx

a

b

cx

The inhabitant can’t be in the part that we know is empty, so it must be in
the other part.

a

b

c
x

Finally, focusing on the part of this diagram with just a and b, we can see
that the conclusion holds, because the a∧¬b region of the diagram is inhabited:

9

76 Chapter 9 ·More Patterns of Reasoning

a

b

c
x

b
a x

So the rule is sound.

Finding Counterexamples

Let’s consider another argument:

• All plants are fungi.In fact, no plants are fungi, see
7 https://en.wikipedia.org/wiki/
Fungus and 7 https://en.wikipedia.
org/wiki/Plant. But that doesn’t
matter: we’re studying the form of
logical arguments, which doesn’t
depend on their subject matter or the
accuracy of their assumptions.

• Some flowers are not plants.
• Therefore, some flowers are not fungi.

If we let a stand for plants, b for fungi, and c for flowers, we can express the
pattern of reasoning used in this argument as a rule:

a � b c � a
c � b

And we can then use Venn diagrams to try to show that the rule is sound.
We represent the assumptions as Venn diagrams:

a
b

a cx

and then laying those two diagrams on top of each other gives the following:

a
b

a cx

a

b

cx

The inhabitant could be in either of the two sub-regions, or both. In order

https://en.wikipedia.org/wiki/Fungus
https://en.wikipedia.org/wiki/Fungus
https://en.wikipedia.org/wiki/Plant
https://en.wikipedia.org/wiki/Plant

Symbolic Proofs of Soundness
77 9

for the conclusion to follow, the inhabitant needs to be in the c ∧ ¬b region of
the diagram, as in the second alternative below:

a

b

c
x

b
cx

? a

b

cx

b
cx

There’s no guarantee that this is the case, so the rule isn’t sound! If we know that a region in a Venn
diagram is empty, and we split that
region into sub-regions, then they
must all be empty. On the other
hand, if we know that a region is
inhabited, and we split that region
into sub-regions, all we know is that
at least one of them is inhabited.
And, to show that a region in a Venn
diagram is empty, we need to show
that all of its sub-regions are empty.
But to show that a region is
inhabited, we only need to show that
at least one of its sub-regions is
inhabited.

a � b c � a
x x
c � b

We can derive a counterexample from the failed attempt to show that the
rule is sound. According to the diagram, a counterexample would be any
universe containing predicates a, b, and c, in which the ¬a ∧ b ∧ c region is
inhabited but the ¬a ∧ ¬b ∧ c region is empty.

One such universe would contain a single thing—let’s call it x—such that a x
is false and b x and c x are both true, and nothing else. In our English version
of the syllogism, that would be a universe containing only one thing that’s both
a fungus and a flower, and nothing else.

In that universe, a � b (because nothing satisfies a, which fits the diagram
for the first premise) and c � a (because x satisfies c but not a, which fits the
diagram for the second premise). However, it’s not the case that c � b (because
everything that satisfies c, namely x, also satisfies b, meaning that the part of
the diagram for the conclusion that’s required to be inhabited is empty).

Symbolic Proofs of Soundness

Pictures involving Venn diagrams with grey regions and xs are a good way to
explain why a rule is sound. The same thing can be done by giving names to the
regions, like so:

a c

b

0

1

2

3

4 5

6
7

9

78 Chapter 9 ·More Patterns of Reasoning

and then giving the soundness proof using the region names. This is just the
same proof but the names allow it to be written down more concisely. Going
back to the dogs/insects/yucky example on page 75:

b � ¬c c � ¬a
a � b

we can reason as follows:

• b � ¬c (no b is c) means that both 3 and 7 are empty.
• c � ¬a (some c is a) means that at least one of 7 and 5 is inhabited. Since 7

is empty, 5 must be inhabited.
• Therefore, a � b (some a is not b) since at least one of 4 and 5 is inhabited.

Or, looking at the unsound plants/fungi/flowers example:

a � b c � a
x x
c � b

we can reason:

• a � b (every a is b) means that both 4 and 5 are empty.
• c � a (some c is not a) means that at least one of 1 and 3 must be inhabited.
• In order to show that c � b (some c is not b) we need to show that at least one

of 1 and 5 is inhabited. Since 5 is empty, we need to show that 1 is inhabited.
But we only know that at least one of 1 and 3 is inhabited. So 1 could be
empty with 3 being inhabited.

Deriving All of the Sound Syllogisms

Sound rules can be obtained fromother sound rules using a few simple algebraic
manipulations that we have already encountered:
• Denying the conclusion: for example, since

b � ¬c c � ¬a
a � b

is sound, both of the following rules are sound:

c � ¬a a � b
b � ¬c

b � ¬c a � b
c � ¬a

The first is obtained by denying the conclusion with the first premise and
the second is obtained by denying the conclusion with the second premise.

• Substituting for predicates: for example, we can substitute ¬b for b in

c � ¬a a � b
b � ¬c

to get
c � ¬a a � ¬b

¬b � ¬c
• Applying contraposition and the double negation law: for example, we can

apply contraposition to the conclusion of the last rule to get

c � ¬a a � ¬b
c � b

Exercises
79 9

and then apply contraposition to the first premise to get

¬¬a � ¬c a � ¬b
c � b

which can be simplified using the double negation law to get

a � ¬c a � ¬b
c � b

Since all of these preserve soundness of rules, there’s no need to check soundness
separately using Venn diagrams.

All of the following rules can be derived, starting from the rule on the top
left (Barbara), by applying one or more of these manipulations: These are all of the sound syllogisms.

Aristotle had nine others that are
only sound provided a � b also
requires that there’s at least one thing
that satisfies a, see 7 https://en.
wikipedia.org/wiki/Syllogism.

a � b b � c
a � c

a � b a � c
b � c

b � c a � c
a � b

a � b b � ¬c
a � ¬c

a � b a � ¬c
b � ¬c

b � ¬c a � ¬c
a � b

a � b c � ¬b
a � ¬c

a � b a � ¬c
c � ¬b

c � ¬b a � ¬c
a � b

a � b c � ¬b
c � ¬a

a � ¬b a � ¬c
c � b

b � ¬c c � ¬a
a � b

a � b b � ¬c
c � ¬a

a � b c � ¬a
c � ¬b

c � b a � ¬c
b � ¬a

For example, the second rule in the first row can be obtained from Barbara by
denying the conclusion with the second premise, and the second rule in the first
column can be obtained from Barbara by substituting ¬c for c. See Exercise 6
for the others.

Exercises

1. Find unambiguous sentences in a language that you’re fluent in, other than
English, that accurately capture the meaning of: a � b (every a is b); a � ¬b
(no a is b); a � ¬b (some a is b); and a � b (some a is not b).

2. Use Venn diagrams to show that the following rules are sound:

a � b a � c
b � c

b � c a � c
a � b

3. Use the contraposition rule for invalid sequents and the double negation
law to show that the following rules are sound:

a � ¬b

b � ¬a

¬a � b

¬b � a

Use Venn diagrams to show that these rules are sound, and give English
examples of their application.

4. Consider the following arguments:

• Somecatshaveno tails.All cats aremammals.Therefore, somemammals
have no tails.

• All informative thingsareuseful. Somewebsites arenotuseful.Therefore,
some websites are not informative.

https://en.wikipedia.org/wiki/Syllogism
https://en.wikipedia.org/wiki/Syllogism

9

80 Chapter 9 ·More Patterns of Reasoning

• All rabbits have fur. Some pets are rabbits. Therefore, some pets have
fur.

• No homework is fun. Some reading is homework. Therefore, some
reading is not fun.

Formulate them as syllogisms, then use Venn diagrams to show that they
are all sound, meaning that they are valid arguments. For the soundness
proofs, use either pictures involving Venn diagrams or arguments referring
to the region names given above.

5. Consider the following syllogism:

a � ¬b b � ¬c
a � ¬c

Use a Venn diagram (either a picture or an argument referring to region
names) to show that it’s unsound, and give a counterexample.

6. Starting from the rule on the top left (Barbara), show how each of the
following rules can be derived from the one above it and the one to its left.

a � b b � c
a � c

a � b a � c
b � c

b � c a � c
a � b

a � b b � ¬c
a � ¬c

a � b a � ¬c
b � ¬c

b � ¬c a � ¬c
a � b

a � b c � ¬b
a � ¬c

a � b a � ¬c
c � ¬b

c � ¬b a � ¬c
a � b

a � b c � ¬b
c � ¬a

a � ¬b a � ¬c
c � b

b � ¬c c � ¬a
a � b

a � b b � ¬c
c � ¬a

a � b c � ¬a
c � ¬b

c � b a � ¬c
b � ¬a

7. Show how each of the syllogisms in Exercise 4 can be derived from the
Barbara rule using denying the conclusion, substituting for predicates,
contraposition, and the double negation law.

81 10

Lists and Recursion
Contents

Building Lists – 82

Recursive Function Definitions – 82

More Recursive Function Definitions – 84

Sorting a List – 85

Recursion Versus List Comprehension – 87

Exercises – 88

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_10

10

82 Chapter 10 · Lists and Recursion

Building Lists

Recall that the list notation [4,6,8] is just shorthand for the expression
4:(6:(8:[])). So, every list can be written using : and []. In fact, every listWell, one way provided you—like

Haskell—regard 4:(6:(8:[])) and
4:6:8:[] as the same expression.

can be written using : and [] in just one way. That fact is what makes pattern
matching work on lists.

Given a list l and a pattern p built using variables, [], : and literals, there is

Remember that patterns can’t
contain repeated variables.

at most one way to match p against l. That match gives values to the variables
in p. It might not match, if p requires a list that’s longer than l, or if p contains
a literal that doesn’t match the value in the corresponding position in l.

Because of this special feature of : and [], they are called constructors. The
We’ve also seen tuple patterns, where
there is just one constructor, namely
the notation (…,…).

reason why : and [] are special in this sense comes from the following way of
defining the type [t] of lists with elements of type t:

Definition. A list of type [t] is either

1. empty, written [], or
2. constructed, written x:xs, with head x (an element of type t) and tail xs (a
list of type [t]).

But wait a minute: this definition is self-referential! The second case of the
explanation of what a list is, refers to a list!

The kind of self-reference used in this definition of lists is okay. It’s called
recursion, and the definition of lists is a recursive definition. It’s meaningful
because the self-reference is well-founded: it defines a complicated list (x:xs) inExamples of non-well-founded

self-reference are “Brexit means
Brexit” (Theresa May) and “A rose is
a rose is a rose” (Gertrude Stein).

terms of a simpler list (xs), and ultimately in terms of the simplest list of all, [].
Here’s how it explains that 4:(6:(8:[])) is a list of type [Int]:

• [] is a list of type [Int], by case (1);
• and so 8:[] is a list of type [Int], with head 8 and tail [], by case (2);
• and so 6:(8:[]) is a list of type [Int], with head 6 and tail 8:[], by case

(2);
• and so 4:(6:(8:[])) is a list of type [Int], with head 4 and tail 6:(8:[]),

by case (2).

The same process works for any finite list.Infinite lists are defined differently,
requiring methods that go beyond
the scope of this book. See 7 https://
en.wikipedia.org/wiki/Corecursion if
you’re curious.

Recursive Function Definitions

We can also write recursive definitions of functions on lists. Here’s a simple
example of a function that squares each of the elements in a list of integers:

This computes the same function as
squares in Chap. 5. We call it
squaresRec to avoid confusing the
two.

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

Again, the definition of squaresRec is self-referential: the second equation
defines squaresRec (x:xs) in terms of squaresRec xs. And again, the self-
reference is well-founded, because we are defining squaresRec applied to a
complicated list (x:xs) in terms of squaresRec applied to a simpler list (xs),
and ultimately in terms of squaresRec applied to the simplest list of all, [].
The first equation, which defines squaresRec [], is called the base case of the
recursion.

If you’re not used to recursion, then this definitionmay lookpretty confusing
at first. The best way to understand it is by looking at an example of how it
can be used to compute the result of applying squaresRec to a specific list, say

https://en.wikipedia.org/wiki/Corecursion
https://en.wikipedia.org/wiki/Corecursion

Recursive Function Definitions
83 10

[1,2,3], step by step. At each step, we’ll expand the underlined part of the
expression, usually using the equations in the definition of squaresRec. Here
goes!

squaresRec [1,2,3]
Expanding list notation

= squaresRec (1 : (2 : (3 : [])))
Applying second equation, with x = 1 and xs = 2 : (3 : [])

= 1*1 : (squaresRec (2 : (3 : [])))
Applying second equation, with x = 2 and xs = 3 : []

= 1*1 : (2*2 : (squaresRec (3 : [])))
Applying second equation, with x = 3 and xs = []

= 1*1 : (2*2 : (3*3 : (squaresRec [])))
Applying first equation

= 1*1 : (2*2 : (3*3 : []))
Doing the multiplications

= 1 : (4 : (9 : []))
Using list notation

= [1,4,9]

We could have done the
multiplications earlier.

It takes a little while to get used to recursion, but once you do, it is simple If you are familiar with other
programming languages, what is
done in them using iteration—such
as while loops and for loops—is
done in Haskell with recursion.

and elegant. But if you’re not yet used to recursion, and pattern matching
still seems a little mysterious, then it might help you to study the following
version of squaresRec before going any further. It uses recursion too, but
pattern matching is replaced by a conditional expression for case analysis and
head/tail for extracting the components of a list.

Every function definition using
pattern matching and/or guards can
be rewritten into a definition in this
form. But Haskell programmers
prefer pattern matching.

squaresCond :: [Int] -> [Int]
squaresCond ws =

if null ws then []
else x*x : squaresCond xs

where x = head ws
xs = tail ws

The sequence of computation steps above for computing the result of applying
squaresRec to [1,2,3] works for this version too, where the first equation
refers to the then case of the conditional, and the second equation refers to the
else case.

Going back to the definition of squaresRec, it fits perfectly with the recur-
sive definition of lists:

• There are two cases, one for the empty list [] and one for the non-empty
list x:xs;

• The body of the second case refers to the function being defined, but the
body of the first case doesn’t;

• The self-reference is well-founded; and
• The computation reduces eventually to the base case squaresRec [] in the

same way as the formation of any finite list reduces eventually to the empty
list [].

Later, you’ll see recursive definitions of functions on lists that don’t fit quite
so perfectly with the definition of lists. For example, some recursive function
definitions have a separate base case for singleton lists, with the definition of
f (x:x':xs) referring to f xs or even to both f (x':xs) and f xs. But we’ll
stick to simple examples like squaresRec for now.

Before continuing: we now have three functions that we claim compute the
same thing, namely squares (from Chap. 5), squaresRec, and squaresCond.
Let’s test that they are in fact the same:

10

84 Chapter 10 · Lists and Recursion

squares_prop :: [Int] -> Bool
squares_prop ns =

squares ns == squaresRec ns && squares ns == squaresCond ns

> quickCheck squares_prop
+++ OK, passed 100 tests.

More Recursive Function Definitions

Here’s another example of a recursive function definition. This one selects all
of the odd numbers in a list.

This computes the same function as
odds in Chap. 5.

oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

This definition uses guards aswell as recursion. The recursive aspect of oddsRec
is exactly the same as it was in squaresRec: the first equation is the base case,
the second and third equations are self-referential, and the self-reference is well-
founded.

Here’s a step-by-step computation of the result of applying oddsRec to
[1,2,3].

oddsRec [1,2,3]
Expanding list notation

= oddsRec (1 : (2 : (3 : [])))
Applying second equation, with x = 1 and xs = 2 : (3 : [])
since odd x == True

= 1 : (oddsRec (2 : (3 : [])))
Applying third equation, with x = 2 and xs = 3 : []
since odd x == False

= 1 : (oddsRec (3 : []))
Applying second equation, with x = 3 and xs = []
since odd x == True

= 1 : (3 : (oddsRec []))
Applying first equation

= 1 : (3 : [])
Using list notation

= [1,3]

Here are four more examples, defining Haskell’s Prelude functions for com-
puting the sum and product of a list of integers and conjunction/disjunction of
a list of Booleans. These functions are examples of accumulators: they collect
together information from a list into a single result.

It’s probably clear why sum [] = 0 is
the right base case, but why is
product [] = 1? And why is
and [] = True but or [] = False? To
understand this, write out a
step-by-step computation of
product [2], which will involve the
result of product [], and similarly
for and and or.

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

and :: [Bool] -> Bool
and [] = True
and (x:xs) = x && and xs

Sorting a List
85 10

or :: [Bool] -> Bool
or [] = False
or (b:bs) = b || or bs

Finally, here is a function that combines the computations in squaresRec,
oddsRec, and sum to compute the sum of the squares of the odd numbers in a
list:

This computes the same function as
sumSqOdds in Chap. 5.

sumSqOddsRec :: [Int] -> Int
sumSqOddsRec [] = 0
sumSqOddsRec (x:xs) | odd x = x*x + sumSqOddsRec xs

| otherwise = sumSqOddsRec xs

It would be a good idea at this point to use QuickCheck to check that
oddsRec and sumSqOddsRec produce the same results as odds and
sumSqOdds in Chap. 5, in the same way as we checked squaresRec and
squaresCond against squares above. (Do it!)

Sorting a List

Now you’re ready for some more interesting examples of recursive function
definitions on lists. We’ll look at two algorithms for sorting a list of integers
into ascending order. Of course, sorting into descending

order is exactly the same—just
replace <= by >= everywhere.

The first algorithm is called insertion sort. The idea is this: to sort a list
of integers, we insert each of the elements in turn into another list, that is
initially empty, taking carewhen doing the insertion to keep the list in ascending
order. Once we’ve inserted all of the elements, we’re done: the result list contains
everything that was in the original list, and it’s in ascending order.

We need two functions. Here’s the first one, a function for doing the inser-
tion:

-- parameter list is in ascending order; same for result list
insert :: Int -> [Int] -> [Int]
insert m [] = [m]
insert m (n:ns) | m <= n = m:n:ns

| otherwise = n : insert m ns

When inserting a number into a non-empty list, there are two cases. The first is
where the number we are inserting belongs at the beginning of the list, because
it’s less than or equal to the head of the list (and is therefore less than or equal
to all of the elements in the tail). Otherwise, it belongs somewhere later in the
list and a recursive call of insert is used to put it in the right place.

The main function insertionSort builds up the result list starting from
the empty list, using insert to do the insertion:

insertionSort :: [Int] -> [Int]
insertionSort [] = []
insertionSort (n:ns) = insert n (insertionSort ns)

That was short and sweet: just five lines of code plus type signatures and a
comment! Let’s check that it works:

> insertionSort [4,8,2,1,7,17,2,3]
[1,2,2,3,4,7,8,17]

10

86 Chapter 10 · Lists and Recursion

Here’s another algorithm, calledQuicksort, for doing the same thing. As the
name suggests, it’s usually faster than insertion sort.In the worst case—when the list to be

sorted is already in ascending or
descending order, meaning that
either less or more is empty
—Quicksort is no faster than
insertion sort. If the lengths of less
and more are more balanced, which
is usually the case, then Quicksort is
faster.

Given a list m:ns, quicksort works by splitting ns into two sublists: one
(call it less) containing all of the elements of ns that are less than m; and the
other (call it more) containing all of the elements of ns that are greater than or
equal to m. Then less and more are sorted, using recursive calls of quicksort,
and those results are appended, with [m] in between, to give the final result.
Here’s the code:

quicksort :: [Int] -> [Int]
quicksort [] = []
quicksort (m:ns) = quicksort less ++ [m] ++ quicksort more

where less = [n | n <- ns, n < m]
more = [n | n <- ns, n >= m]

Let’s look at quicksort [4,8,2,1,7,17,2,3] to see how this works:See 7 https://en.wikipedia.org/wiki/
Quicksort for more about Quicksort.
This includes an animated
visualisation but where the last
element in the list is used as the
“pivot” value, rather than the first
element as is done here.

• m = 4, so less = [2,1,2,3] and more = [8,7,17]
• quicksort less = [1,2,2,3] and quicksort more = [7,8,17]
• the result is [1,2,2,3] ++ [4] ++ [7,8,17] = [1,2,2,3,4,7,8,17]

Now thatwe have twoways of doing sorting,we can check that they produce
the same results:

sort_prop :: [Int] -> Bool
sort_prop ns = insertionSort ns == quicksort ns

> quickCheck sort_prop
+++ OK, passed 100 tests.

Now that we know how to sort lists of integers, what about lists of strings?
All of the function definitions above work for lists of strings as well. The

only functions required on Int—apart from list operations like : and ++— are
the order relations <= (in insert), and < and >= (in quicksort). Those relations
are available for String as well, where they give the dictionary ordering, and
for many other types including Float and (maybe surprising) Bool:

> False < True
True

Recall that a polymorphic function can be restricted to types for which
equality testing is available by adding an Eq requirement to its type:

elem :: Eq a => a -> [a] -> Bool

In the same way, an Ord requirement can be added to a polymorphic type toAn Ord requirement includes an Eq
requirement, see Chap. 24; that
makes sense because of
antisymmetry: x <= y and y <= x
imply x == y.

restrict to types for which the order relations are available, like so:

insert :: Ord a => a -> [a] -> [a]
insertionSort :: Ord a => [a] -> [a]
quicksort :: Ord a => [a] -> [a]

With that change, we can use insertionSort and quicksort to sort lists of
strings into alphabetical order:

> insertionSort ["elephant","zebra","gnu","buffalo","impala"]
["buffalo","elephant","gnu","impala","zebra"]
> quicksort ["hippopotamus","giraffe","hippo","lion","leopard"]
["giraffe","hippo","hippopotamus","leopard","lion"]

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort

Recursion Versus List Comprehension
87 10

Recursion Versus List Comprehension

You’ve seen that, with some functions (squares/squaresRec, odds/
oddsRec, sumSqOdds/sumSqOddsRec), we have a choice whether to write the
definition using list comprehension or recursion. Comparing the definitions—
here are squares and squaresRec again:

squares :: [Int] -> [Int]
squares ns = [n*n | n <- ns]

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

—it seems clear that list comprehension is preferable, since it yields definitions
that are shorter and simpler.

But some functions can’t be written using comprehension. Examples are sum
and product: list comprehensions always produce a list, and these functions
don’t have lists as results.

There are other cases, like sorting, where list comprehension might be pos-
sible but wouldn’t be natural. One reason is that list comprehension works
on single list elements at a time, and sorting involves comparison of different
list elements with each other. Our definition of quicksort uses a mixture: list
comprehension to compute intermediate results, with recursion for the overall
algorithm structure.

Recursion is about breaking up problems into smaller sub-problems that are
easier to solve than the original problem, and thenusing the solutions to the sub-
problems to get a solution to the original problem. This general strategy, known
as divide and conquer, is one of themost fundamental techniques in Informatics. For more on divide and conquer, see

7 https://en.wikipedia.org/wiki/
Divide-and-conquer_algorithm.

Sometimes, as in most of our examples so far, there’s one sub-problem, and it’s
just one element smaller than theoriginal problem.Sometimes, as inquicksort,
there are two sub-problems, and—as usually happens in quicksort—they are
about half the size of the original problem. Two small sub-problems are better
than one big sub-problem, especially since the same decomposition strategy
applies again to each of them. As a result, the overall computation is much
more efficient, as you’ll see in a later chapter.

Since most recursive function definitions on lists use recursion on the tail,
one way to approach the problem of writing a recursive definition is to assume
that this is the case, write the skeleton for such a recursive definition, and then
fill in the blanks. For a function f of type [a] -> a -> [a], for instance:

f :: [a] -> a -> [a]
f [] y = ... y ...
f (x:xs) y = ... x ... f xs ... y ...

Now you just need to fill in the ...s.

Base case: It’s usually easy to fill this in.

Recursive case: Write down a couple of concrete examples of the required
results for f (x:xs) y and f xs y. What do you need to do to f xs y, using
x and y, to get f (x:xs) y?

If this doesn’t work, you need to consider variations: two base cases? a case
split? two recursive function calls? If all else fails, you may have a case like
quicksort which requires a different problem decomposition.

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

10

88 Chapter 10 · Lists and Recursion

Exercises
1. Write out the step-by-step computation of sum [1,2,3], product

[1,2,3], and sumSqOddsRec [1,2,3]. Then do the same for
insert 2 [1,3], and finally for insertionSort [2,1,3].

2. Write a function halveEvensRec :: [Int] -> [Int] that returns half of
each even number in a list. For example,

halveEvensRec [0,2,1,7,8,56,17,18] == [0,1,4,28,9]
Use recursion, not list comprehension.
Use QuickCheck to test that halveEvensRec returns the same result as
halveEvens in Exercise 5.3.

3. Write a function inRangeRec :: Int -> Int -> [Int] -> [Int] that returns
all numbers in the input list that fall within the range given by the first two
parameters (inclusive). For example,

inRangeRec 5 10 [1..15] == [5,6,7,8,9,10]
Use recursion, not list comprehension.
Use QuickCheck to test that inRangeRec returns the same result as inRange
in Exercise 5.4.

4. Write a function countPositivesRec to count the number of positive num-
bers in a list. For example,

countPositivesRec [0,1,-3,-2,8,-1,6] == 4
Use recursion, not list comprehension.
Use QuickCheck to test that countPositivesRec returns the same result
as countPositives in Exercise 5.5.

5. Write a function multDigitsRec :: String -> Int that returns the product
of all the digits in the input string. If there are no digits, your function should
return 1. For example,

multDigitsRec "The time is 4:25" == 40
multDigitsRec "No digits here!" == 1
Use recursion, not list comprehension. You’ll need a library function to
determine if a character is a digit and one to convert a digit to an integer.
Use QuickCheck to test that multDigitsRec returns the same result as
multDigits in Exercise 5.6.

6. What’s wrong with the following version of insertionSort?

insertionSort :: Ord a => [a] -> [a]
insertionSort [] = []
insertionSort (n:ns) = insertionSort (insert n ns)

7. Write and run tests to check that:

• The elements in quicksort ns are in ascending order.
• quicksort ns contains the same elements as ns.

8. Merge sort is another sorting algorithm whose efficiency comes from the
fact that no rearrangement of elements is required to merge (interleave) two
ordered lists to give an ordered list containing all of the elements of both
lists. Given a list of integers, it proceeds as follows:

• Split the list into two sublists: front, containing the first half of the
elements; and back, containing the rest.

• Sort front and back and merge the results.

Implement merge sort. You will need two functions: one to merge two lists
that are in ascending order; and the main mergesort function that does
the split, uses mergesort recursively to sort the two sublists, and then uses
merge to combine them into a sorted list. (Hint: To do the split, consider
using the Prelude functions take and drop.)

https://doi.org/10.1007/978-3-030-76908-6_5
https://doi.org/10.1007/978-3-030-76908-6_5
https://doi.org/10.1007/978-3-030-76908-6_5
https://doi.org/10.1007/978-3-030-76908-6_5

89 11

More Fun with Recursion
Contents

Counting – 90

Infinite Lists and Lazy Evaluation – 91

Zip and Search – 92

Select, Take and Drop – 94

Natural Numbers – 94

Recursion and Induction – 95

Exercises – 97

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_11

11

90 Chapter 11 ·More Fun with Recursion

Counting

We’ll now look atmore examples of recursively defined functionswhich demon-
strate some points that didn’t arise in earlier examples. To start, recall the nota-
tion [1..10].

Underlying this notation is the following Prelude function, where [m..n]
stands for enumFromTo m n:

enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

Here, the recursion is on integers rather than lists.
We’ve learned how important it is that recursion is well-founded: it’s okay

to define the result of applying a function to a value in terms of its applica-
tion to a smaller value. But here, we’re defining enumFromTo m n in terms of
enumFromTo (m+1) n! Of course, m+1 is larger than m; how can that be right?
And the first equation must be the base case, since there is no recursion, but it
looks different from all of the previous examples, so what’s going on there?

To understand this definition, let’s look at the step-by-step computation of
enumFromTo 1 3, expanding the underlined part of the expression at each step:

enumFromTo 1 3
Applying second equation, with m = 1 and n = 3
since m <= n == True

= 1 : enumFromTo 2 3
Applying second equation, with m = 2 and n = 3
since m <= n == True

= 1 : 2 : enumFromTo 3 3
Applying second equation, with m = 3 and n = 3
since m <= n == True

= 1 : 2 : 3 : enumFromTo 4 3
Applying first equation, with m = 4 and n = 3
since m > n == True

= 1 : 2 : 3 : []
Using list notation

= [1,2,3]

We see from this example that the recursion in enumFromTo is well-founded
too, because the difference between m and n decreases with each recursive func-
tion application! The crucial thing is that something gets smaller. And the base
case fits with this, since it kicks in as soon as the difference becomes negative.

Here’s a similar function that multiplies the numbers in a range together
rather than making them into a list:

prodFromTo :: Int -> Int -> Int
prodFromTo m n | m > n = 1

| m <= n = m * prodFromTo (m+1) n

and then we can use prodFromTo to define the factorial function:n! is the mathematical notation for
factorial n. factorial :: Int -> Int

factorial n = prodFromTo 1 n

Notice that the definition of prodFromTo is exactly the same as
enumFromTo, where : is replaced by * and [] is replaced by 1. So,
prodFromTo m n yields

m * (m+ 1) * · · · * n * 1

Infinite Lists and Lazy Evaluation
91 11

instead of

m : (m+ 1) : · · · : n : []

And the recursion in prodFromTo is well-founded for the same reason as it is in
enumFromTo.

Infinite Lists and Lazy Evaluation

Remember that Haskell can compute with infinite lists like [0..]. Here’s a
function, analogous to enumFromTo, for producing the infinite list of integers
starting from m:

enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)

The recursion in this definition isn’t well-founded, and there’s no base case, so
evaluation won’t terminate. For example:

enumFrom 1
Applying equation, with m = 1

= 1 : enumFrom 2
Applying equation, with m = 2

= 1 : 2 : enumFromTo 3
Applying equation, with m = 3

=…

It’s nevertheless possible to compute with such a definition. Given the fol-
lowing definitions of the head and tail functions:

The Prelude function error is used
when you want to stop computation
and produce an error message
instead of a value.

head :: [a] -> a
head [] = error "empty list"
head (x : _) = x

tail :: [a] -> [a]
tail [] = error "empty list"
tail (_ : xs) = xs

here is how Haskell computes head (tail (enumFrom 0)):

head (tail (enumFrom 0))
Applying equation for enumFrom, with m = 0

= head (tail (0 : enumFrom 1))
Applying equation for tail, with xs = enumFrom 1

= head (enumFrom 1)
Applying equation for enumFrom, with m = 1

= head (1 : enumFrom 2)
Applying equation for head, with x = 1

= 1

This gives a hint of how lazy evaluation operates. Expressions are held in There is more to lazy evaluation than
this, see 7 https://en.wikipedia.org/
wiki/Lazy_evaluation.

unevaluated form until their values are needed. In order to get the value of
head (tail (enumFrom 0)), we need the value of tail (enumFrom 0). In order
to get that value, we need to know whether enumFrom 0 is empty or not, and
if it is non-empty then we need to know its tail. After one step of evaluation,
we discover that enumFrom 0 = 0 : enumFrom 1 and that is enough to compute
that tail (enumFrom 0) = enumFrom 1. And so on.

Here’s a more interesting example:

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation

11

92 Chapter 11 ·More Fun with Recursion

primes :: [Int]
primes = [p | p <- [2..], isPrime p]

upto :: Int -> [Int] -> [Int]
upto bound [] = []
upto bound (x:xs) | x > bound = []

| otherwise = x : upto bound xs

and then

> upto 30 primes
[2,3,5,7,11,13,17,19,23,29]

Because of the application of upto, none of the primes that are greater than
30 will be computed: those values aren’t needed to produce the result of the
computation.

Zip and Search

Nowwe’ll look at a frequently-used function fromHaskell’s Prelude, called zip.
It takes two lists—possibly with different types of elements—and produces a
single list of pairs, with the first component taken from the first list and the
second component taken from the second list. Obviously, the name is intended
to suggest a zipper, but in Haskell the “teeth” of the zipper are not interleaved
but paired.

The definition of zip uses simultaneous recursion on both lists.

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Two base cases are required because of the simultaneous recursion. The defini-The command
:set -Wincomplete-patterns
asks Haskell to warn you about
missing cases when you use pattern
matching. Use :set -W to include
more warnings about potential
mistakes in your code. Notice the
upper case W!

tion might look a little prettier with an extra equation for zip [] [], but that
case is covered by the first equation.

Notice what happens if the lengths of the two lists don’t match: zip will
truncate the longer one, disregarding all of the extra elements. That fact turns
out to be very convenient; it allows us to do things like this:

> zip [0..] "word"
[(0,'w'),(1,'o'),(2,'r'),(3,'d')]

which pairs characters in a string with their positions, counting from 0. It treats
[0..] as if it were [0..(length "word" - 1)], without requiring us to specify
that list explicitly. Let’s see how it works, on a slightly smaller example, recalling
that [0..] is shorthand for enumFrom 0:

If you feel that you understand
recursion, these step-by-step
computations are probably getting a
bit tedious by now. If so, feel free to
skip them. Or visit 7 https://
chrisuehlinger.com/
LambdaBubblePop/ and play with
the fun animation there. In any case,
make sure that you really do
understand recursion, meaning that
you can write answers to the
exercises!

zip [0..] "ab"
Expanding [0..] and string notation

= zip (enumFrom 0) ('a' : 'b' : [])
Applying equation for enumFrom, with m = 0

= zip (0 : enumFrom 1) ('a' : 'b' : [])
Applying third equation for zip, with x = 0, xs = enumFrom 1,
y = 'a' and ys = 'b' : []

= (0,'a') : zip (enumFrom 1) ('b' : [])
Applying equation for enumFrom, with m = 1

= (0,'a') : zip (1 : enumFrom 2) ('b' : [])
Applying third equation for zip, with x = 1, xs = enumFrom 2,
y = 'b' and ys = []

https://chrisuehlinger.com/LambdaBubblePop/
https://chrisuehlinger.com/LambdaBubblePop/
https://chrisuehlinger.com/LambdaBubblePop/

Zip and Search
93 11

= (0,'a') : (1,'b') : zip (enumFrom 2) []
Applying equation for enumFrom, with m = 2

= (0,'a') : (1,'b') : zip (2 : enumFrom 3) []
Applying second equation for zip, with xs = 2 : enumFrom 3

= (0,'a') : (1,'b') : []
Using list notation

= [(0,'a'),(1,'b')]

Here’s another useful way of using zip:

> zip "word" (tail "word")
[('w','o'),('o','r'),('r','d')]

This is handywhen youwant to relate successive elements of a list. For example,
here’s a function that counts the number of doubled letters in a string:

countDoubled :: String -> Int
countDoubled [] = 0
countDoubled xs = length [x | (x,y) <- zip xs (tail xs), x==y]

Now consider the problem of searching a string for occurrences of a char-
acter. We want a list of all of the positions where it occurs, counting from 0.
We can do this easily with a list comprehension and zip, using the idea of first
pairing each character with its position in the string:

search :: String -> Char -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

Here is a recursive version using a helper function:

searchRec :: String -> Char -> [Int]
searchRec xs y = srch xs y 0

where
-- i is the index of the start of the substring
srch :: String -> Char -> Int -> [Int]
srch [] y i = []
srch (x:xs) y i

| x == y = i : srch xs y (i+1)
| otherwise = srch xs y (i+1)

Let’s see how this works:

searchRec "book" 'o'
Applying equation for searchRec, with xs = "book" and y = 'o'

= srch "book" 'o' 0
Expanding string notation

= srch ('b' : 'o' : 'o' : 'k' : []) 'o' 0
Applying third equation for srch, with x = 'b',
xs = 'o':'o':'k':[], y = 'o' and i = 0,
since x == y = False

= srch ('o' : 'o' : 'k' : []) 'o' 1
Applying second equation for srch, with x = 'o',
xs = 'o':'k':[], y = 'o' and i = 1,
since x == y = True

= 1 : srch ('o' : 'k' : []) 'o' 2
Applying second equation for srch, with x = 'o',
xs = 'k':[], y = 'o' and i = 2,
since x == y = True

= 1 : 2 : srch ('k' : []) 'o' 3
Applying third equation for srch, with x = 'k',
xs = [], y = 'o' and i = 3,
since x == y = False

11

94 Chapter 11 ·More Fun with Recursion

= 1 : 2 : srch [] 'o' 4
Applying first equation for srch, with y = 'o' and i = 4

= 1 : 2: []
Using list notation

= [1,2]

Using polymorphism, we can search in lists of any type, not just strings.
Here’s the version using list comprehension again, but with its most general
type:

search :: Eq a => [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

Recall that the requirement Eq a => means that any type a of list elements is
okay, provided equality testing (==) works on values of type a. So, for example,
search will work on lists of strings but not on lists of functions:

> search [square,abs] factorial
<interactive>:1:1: error:

• No instance for (Eq (Int -> Int)) arising from a use of ‘search’
(maybe you haven't applied a function to enough arguments?)

• In the expression: search [square, abs] factorial
In an equation for ‘it’: it = search [square, abs] factorial

Select, Take and Drop

We will now look at three related functions from the Prelude that have integer
parameters.

• xs !! n returns the element in the nth position of xs, starting from 0.
• take n xs returns the first n elements of xs.
• drop n xs returns all of the elements of xs after the first n.

!! is pronounced “select”. If you are
familiar with programming
languages that use arrays, you might
expect that !! is a very
commonly-used function in Haskell.
You would be wrong.

(!!) :: [a] -> Int -> a
(x:xs) !! 0 = x
[] !! i = error "index too large"
(x:xs) !! i = xs !! (i-1)

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop i [] = []
drop i (x:xs) = drop (i-1) xs

These definitions do simultaneous recursion on i and xs. That’s why they have
two base cases: one for when i is 0, and one for when xs is empty.

Natural Numbers

Let’s now take a closer look at functions like !!, take and drop that we defined
by recursion on integers.

All three of these functions only make sense for actual parameters that are
natural numbers (non-negative integers). The recursion counts down, with 0 as
a base case.

Recall how recursive definitions of functions on lists was explained by ref-
erence to the (recursive) definition of lists:

Recursion and Induction
95 11

Definition. A list of type [t] is either
1. empty, written [], or
2. constructed, written x:xs, with head x (an element of type t) and tail xs (a

list of type [t]).

We can define natural numbers by recursion in the same style:

Definition. A natural number is either
1. zero, written 0, or
2. the successor, written n+1, of its predecessor n (a natural number).

For lists, we use [] and : for pattern matching, and recursive definitions of
functions on lists typically have the same structure as the definition of lists. For
natural numbers, we could regard 0 and +1 as constructors, and use them for In fact, Haskell once did allow such

patterns, but they were removed in
Haskell 2010.

pattern matching and recursion. Instead, we use n and n-1 (the predecessor of
n), once we have dealt with 0, but the idea is exactly the same.

Here are recursive definitions of addition, multiplication, and exponentia-
tion in this style:

This is called Peano arithmetic, after
Giuseppe Peano (1858−1932), an
Italian mathematician and linguist
who was responsible for the
definition of the natural numbers
and the modern treatment of proof
by induction, see 7 https://en.
wikipedia.org/wiki/Giuseppe_Peano.

plus :: Int -> Int -> Int
plus m 0 = m
plus m n = (plus m (n-1)) + 1

times :: Int -> Int -> Int
times m 0 = 0
times m n = plus (times m (n-1)) m

power :: Int -> Int -> Int
power m 0 = 1
power m n = times (power m (n-1)) m

Recursion and Induction

You are probably familiar with the following method of proof by induction.

Proof method (Induction). To prove that a property P holds for all natural
numbers:

Base case: Show that P holds for 0; and

Induction step: Show that if P holds for a given natural number n (the induc-
tion hypothesis), then it also holds for n+ 1.

Here is an example of a proof by induction that

0+1+· · ·+n = n(n+ 1)
2

for all natural numbers n.

Base case: 0 = 0(0+1)
2

Induction step: Suppose that the property holds for a given natural number
n:

0+1+· · ·+n = n(n+ 1)
2

.

Then we show that it holds for n+ 1:

https://en.wikipedia.org/wiki/Giuseppe_Peano
https://en.wikipedia.org/wiki/Giuseppe_Peano

11

96 Chapter 11 ·More Fun with Recursion

0+ 1+ · · · + n+ (n+ 1) = n(n+ 1)
2

+ (n+ 1)

= n(n+ 1)+ 2(n+ 1)
2

= (n+ 1)((n+ 1)+ 1)
2

Why does this work? The justification is given by the recursive definition of
natural numbers. First, consider the explanation of why 3 is a natural number:

1. 0 is a natural number, by case (1);
2. and so 1 is a natural number, with predecessor 0, by case (2);
3. and so 2 is a natural number, with predecessor 1, by case (2);
4. and so 3 is a natural number, with predecessor 2, by case (2).

Now, look at what happens when we use the parts of the induction proof in
place of the parts of the definition of natural numbers:

1. 0+ 1+ · · · + n = n(n+1)
2 for n = 0, by the base case

2. and so 0+ 1+ · · · + n = n(n+1)
2 for n = 1, by the induction step applied to

its predecessor 0;
3. and so 0+ 1+ · · · + n = n(n+1)

2 for n = 2, by the induction step applied to
its predecessor 1;

4. and so 0+ 1+ · · · + n = n(n+1)
2 for n = 3, by the induction step applied to

its predecessor 2.

The same explanation works for every natural number, so the proof shows that
the property holds for all natural numbers.

By analogy, we can use the definition of lists as justification of an induction
method for lists.

Proof method (Structural Induction). To prove that a property P holds for allRod Burstall (1934−), a British
computer scientist and Professor
Emeritus at the University of
Edinburgh, was the first to recognise
the role of structural induction in
proving properties of programs, see
7 https://en.wikipedia.org/wiki/
Rod_Burstall.

finite lists of type [t]:

Base case: Show that P holds for []; and

Induction step: Show that if P holds for a given list xs of type [t] (the
induction hypothesis), then it also holds for x:xs for any value x of type t.

Let’s prove by structural induction that ++ (the function that appends two
lists) is associative. First, here is the function definition:

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

We’ll prove that

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

by induction on xs. We use the technique of proving that an equation holds byWhen there’s more than one variable,
there is a choice of which one to use
in an induction proof.

showing that both sides are equal to the same thing.

Base case:
([] ++ ys) ++ zs = ys ++ zs
[] ++ (ys ++ zs) = ys ++ zs

https://en.wikipedia.org/wiki/Rod_Burstall
https://en.wikipedia.org/wiki/Rod_Burstall

Exercises
97 11

Induction step: Suppose that (xs ++ ys) ++ zs = xs ++ (ys ++ zs) for a given
list xs. Then we show that it holds for x:xs.

((x : xs) ++ ys) ++ zs
= (x : (xs ++ ys)) ++ zs
= x : ((xs ++ ys) ++ zs)
= x : (xs ++ (ys ++ zs)) (applying the induction hypothesis)

(x : xs) ++ (ys ++ zs)
= x : (xs ++ (ys ++ zs))

Exercises

1. The definition of enumFromTo “counts up”: enumFromTo m n is defined in
terms of enumFromTo (m+1) n.Write a definition of enumFromTo that counts
down. Test that the two functions produce the same result.

2. Write a recursive definition of factorial without using prodFromTo. Test
that it produces the same result as the definition on page 90.

3. Using list comprehension and zip, write a version of the function
angleVectors from Chap. 3 that represents n-dimensional vectors using
the type [Float]. Test that when n = 2 it produces the same result as the
earlier version.

4. Use list comprehension and zip to write versions of !!, take and drop
(Hint: for inspiration, look at the definition of search on page 93) and test
that they produce the same results as the versions above. Investigate the
behaviour of both versions on infinite lists, and explain the differences that
you observe.

5. Give a definition of zip that requires the lengths of the lists to match.
6. Give recursive definitions of subtraction and division in the style of the

definitions of plus, times, and power above.Your definition of subtraction
should produce an error when the result would otherwise be negative.

7. A recursive definition is tail recursive if every recursive function application Tail recursive definitions can be
implemented very efficiently on
conventional hardware, since the
recursive function applications can
be implemented as jumps rather than
as function calls. See 7 https://en.
wikipedia.org/wiki/
Recursion_(computer_science)#
Tail-recursive_functions.

it contains is the “last action” in that case of the definition. For example,
our definition of plus

plus :: Int -> Int -> Int
plus m 0 = m
plus m n = (plus m (n-1)) + 1

is not tail recursive, because the recursive application of plus is followed
by an addition. This would also be the case it we had written the second
equation as

plus m n = 1 + (plus m (n-1))

But the following definition of the same function

plus' :: Int -> Int -> Int
plus' m 0 = m
plus' m n = plus' (m+1) (n-1)

is tail recursive.
Write a version of Haskell’s reverse function

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

that is tail recursive, by completing the following skeleton:

https://en.wikipedia.org/wiki/Recursion_(computer_science)#Tail-recursive_functions
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Tail-recursive_functions
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Tail-recursive_functions
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Tail-recursive_functions

11

98 Chapter 11 ·More Fun with Recursion

reverse' :: [a] -> [a]
reverse' xs = rev xs []

where rev :: [a] -> [a] -> [a]
rev [] ys = ys
rev (x:xs) ys = rev (...) (...)

Test that reverse' produces the same result as reverse.
8. Use structural induction and the associativity of ++ to prove that

reverse (xs ++ ys) = reverse ys ++ reverse xs

You can assume that xs ++ [] = xs, or else prove it as well by structural
induction.

99 12

Higher-Order Functions

Contents

Patterns of Computation – 100

Map – 100

Filter – 102

Fold – 103

foldr and foldl – 105

Combining map, filter and foldr/foldl –
106

Curried Types and Partial Application – 107

Exercises – 108

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_12

12

100 Chapter 12 · Higher-Order Functions

Patterns of Computation

The same patterns of computation keep coming up in function definitions. An
example from the beginning of Chap. 11 was in the definitions of enumFromTo
and prodFromTo:

enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

prodFromTo :: Int -> Int -> Int
prodFromTo m n | m > n = 1

| m <= n = m * prodFromTo (m+1) n

The only difference between these two definitions is that : and [] in
enumFromTo are replaced by * and 1 in prodFromTo. The relationship between
the two function definitions is also apparent in the results of the function appli-
cations: enumFromTo m n yields

m : (m + 1) : · · · : n : []

and prodFromTo m n yields

m * (m + 1) * · · · * n * 1

In Haskell, a pattern of computation—like the one that appears in both
enumFromTo and prodFromTo—can be captured as a function. This function
can then be instantiated in different ways to define the particular functions that
exhibit that pattern of computation. This allows us to replace the definitions of
enumFromTo and prodFromTo by something like

enumFromTo = enumPattern (:) []
prodFromTo = enumPattern (*) 1

where enumPattern is a function that expresses the pattern of computation in
enumFromTo and prodFromTo.

So far sogood, butnotice that this involves theuseof functions—the function
: for enumFromTo and the function * for prodFromTo—as actual parameters
of enumPattern. So enumPattern is different from all of the functions that

A “first-order” function takes
ordinary values (integers, etc.) as
parameters, and returns such a value
as its result. A “second-order”
function takes first-order functions,
and possibly also ordinary values, as
parameters, and returns such a value
as its result. And so on. A
“higher-order function” is a function
of order higher than 1.

have appeared up to now: it’s a higher-order function, because it takes another
function as a parameter. Here is the definition of the function enumPattern:

enumPattern :: (Int -> t -> t) -> t -> Int -> Int -> t
enumPattern f e m n | m > n = e

| m <= n = f m (enumPattern f e (m+1) n)

According to the type of enumPattern, its first parameter is indeed a function.
You’ll be able to fully understand this definition, and its type, once you’ve seen
some more examples. But what is clear already is that Haskell is able to treat
functions as ordinary data values. As you’ll see, this gives surprising power.

Althoughour first examplesof higher-order functions appear in this chapter,
there is actually nothing new here. Functions take values as parameters and
return values as results. Therefore, functions as parameters and results of otherThis situation is captured by the

motto “functions are first-class
citizens”, see 7 https://en.wikipedia.
org/wiki/First-class_citizen.

functions are supported simply because functions are values.

Map

An extremely common pattern of computation appears in the following func-
tion definitions using list comprehensions:

https://en.wikipedia.org/wiki/First-class_citizen
https://en.wikipedia.org/wiki/First-class_citizen

Map
101 12

squares :: [Int] -> [Int]
squares ns = [n*n | n <- ns]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

You’ve seen the function squares before. The function ords computes the
numeric code of each character in a list, using the function ord :: Char -> Int The function chr :: Int -> Char

from Data.Char converts an integer
to the corresponding character.
Character codes for the Latin
alphabet are arranged in such a way
that for each lower case letter c, the
corresponding upper case letter is
given by chr (ord c - 32). But it’s
better to use the function toUpper
from Data.Char since it also works
for non-Latin letters.

from the Data.Char library module.

> ords "cat"
[99,97,116]

Both squares and ords apply a function—the function that squares an integer,
in squares, or ord, in ords—to each element of a list, returning a list of the
results. The general pattern, which takes the function to be applied to each list
element as a parameter, is the Prelude function map.

squares [a1,a2,. . .,an] = [a1*a1, a2*a2, . . ., an*an]
ords [a1,a2,. . .,an] = [ord a1, ord a2, . . ., ord an]
map f [a1,a2,. . .,an] = [f a1, f a2, . . ., f an]

Here is the definition of map:

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

To instantiate the pattern of computation that map captures, we simply apply
it to the function that we want to apply to each list element. This allows the
functions square and ords to be defined in terms of map as follows:

squares :: [Int] -> [Int]
squares = map sqr

where sqr x = x*x

ords :: [Char] -> [Int]
ords = map ord

To see how this works, let’s work through an example.

squares [1,2,3]
Applying equation for squares

= map sqr [1,2,3]
Applying equation for map, with f = sqr and xs = [1,2,3]

= [sqr x | x <- [1,2,3]]
Expanding list comprehension

= [sqr 1, sqr 2, sqr 3]
Applying sqr and doing the multiplications

= [1,4,9]

This shows that using functions as parameters is not really any different
from using ordinary values as parameters. What is a little different from what
you have seen so far is the way that we have defined squares and ords as the
application of map to just one of its two parameters. The type of map shows why What we have done in the definition

of squares and ords, called partial
application, is an important
technique in functional
programming. There’s more about it
coming later in this chapter.

this works:

map :: (a -> b) -> [a] -> [b] and sqr :: Int -> Int
so map sqr :: [Int] -> [Int]

map :: (a -> b) -> [a] -> [b] and ord :: Char -> Int
so map ord :: [Char] -> [Int]

12

102 Chapter 12 · Higher-Order Functions

Exactly the same pattern of computation that is captured by map appears inThe history of the map function
shows how ideas from functional
programming eventually make their
way into other programming
languages. It first appeared in 1959
in the first functional programming
language, LISP. Now, more than 60
years later, map is included in some
form in most other programming
languages, but for instance, it first
became available in Java in 2014.

a different form in the recursive versions of squares and ords:

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

ordsRec :: [Char] -> [Int]
ordsRec [] = []
ordsRec (x:xs) = ord x : ordsRec xs

Again, the only difference between these two definitions is the function that is
applied to x in the second equation of each definition. This pattern is captured
by the following recursive definition of map:

mapRec :: (a -> b) -> [a] -> [b]
mapRec f [] = []
mapRec f (x:xs) = f x : mapRec f xs

As before, we can instantiate the pattern by applying mapRec to a function, for
example,

squaresRec :: [Int] -> [Int]
squaresRec = mapRec sqr

where sqr x = x*x

And here’s the same example as before, using the recursive version of mapRec:

squaresRec [1,2,3]
Applying equation for squaresRec

= mapRec sqr [1,2,3]
Expanding list notation

= mapRec sqr (1 : (2 : (3 : [])))
Applying second equation, with x = 1 and xs = 2 : (3 : [])

= sqr 1 : (mapRec sqr (2 : (3 : [])))
Applying second equation , with x = 2 and xs = 3 : []

= sqr 1 : (sqr 2 : (mapRec sqr (3 : [])))
Applying second equation , with x = 3 and xs = []

= sqr 1 : (sqr 2 : (sqr 3 : (mapRec sqr [])))
Applying first equation

= sqr 1 : (sqr 2 : (sqr 3 : []))
Applying sqr and doing the multiplications

= 1 : (4 : (9 : []))
Using list notation

= [1,4,9]

Filter

Another very common pattern is extracting all of the elements of a list that have
some property. Here are two examples, written using both list comprehension
and recursion:

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

oddsRec :: [Int] -> [Int]

Fold
103 12

oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digitsRec :: [Char] -> [Char]
digitsRec [] = []
digitsRec (x:xs) | isDigit x = x : digitsRec xs

| otherwise = digitsRec xs

You’ve seen odds and oddsRec before. The function digits returns all of the
characters in a list that are digits, '0'..'9', using Data.Char.isDigit.

The difference between odds and digits, and between oddsRec and
digitsRec, is the function that is applied in the guard: odd versus isDigit.
Only a function that produces a result of type Bool—a predicate, see Chap. 6—
would make sense because of its use in the guard.

This pattern is capturedby thePrelude functionfilter.Here are definitions
of filter using list comprehension and recursion.

Since we have defined
type Predicate u = u -> Bool,
we can also say
filter :: Predicate a -> [a] -> [a]
and ditto for filterRec.

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

filterRec :: (a -> Bool) -> [a] -> [a]
filterRec p [] = []
filterRec p (x:xs) | p x = x : filterRec p xs

| otherwise = filterRec p xs

To instantiate filter or filterRec, we apply it to an appropriate function.

odds :: [Int] -> [Int]
odds = filter odd

digits :: [Char] -> [Char]
digits = filter isDigit

All of the functions that we have seen so far being used as parameters to map
and filter have been very simple. This is not required: functional parameters
can be as complicated as desired. The only restriction is that they need to have
the required type.

Fold

The next pattern of computation that we are going to consider is also very com-
mon, but is a little more complicated than map and filter. It is demonstrated
by the definitions of the functions sum, product and and, which you have seen
before, as well as the Prelude function concat, which appends (“concatenates”)
all of the elements in a list of lists.

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

12

104 Chapter 12 · Higher-Order Functions

and :: [Bool] -> Bool
and [] = True
and (x:xs) = x && and xs

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Here are some examples of concat in action:

> concat [[1,2,3],[4,5]]
[1,2,3,4,5]
> concat ["con","cat","en","ate"]
"concatenate"

This time there are two differences between these definitions, not just one:

1. the value that is returned in the base case: 0 for sum, 1 for product, True
for and, [] for concat; and

2. the function that is used to combine the head of the list with the result of the
recursive function application to the tail of the list: + for sum, * for product,
&& for and, ++ for concat.

In each of these examples, the base case value is the identity element of the
“combining” function: 0 for +, 1 for *, True for &&, [] for ++. That is, 0 + x =
x = x + 0, etc. This relationship is not required, but it is a common situation.

The pattern that is used in all of these examples is captured by the Prelude
function foldr:foldr is pronounced “fold-R”, or

sometimes “fold right”. foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

This definition is a little easier to understand when the application of the func-
tion f is written using infix notation:

foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = x `f` (foldr f v xs)

Then, writing out the computations makes it easy to see what’s going on:

sum [a1,. . .,an] = a1 + (· · · + (an + 0)· · ·)
product [a1,. . .,an] = a1 * (· · · * (an * 1)· · ·)
and [b1,. . .,bn] = b1 && (· · · && (bn && True)· · ·)
concat [xs1,. . .,xsn] = xs1 ++ (· · · ++ (xsn ++ [])· · ·)
foldr f v [x1,. . .,xn] = x1 f̀ ` (· · · f̀ ` (xn f̀ ` v)· · ·)

In foldr f v xs, the result is computed by combining the elements of the list

foldr is called “reduce” in some
other languages. Google’s
MapReduce and Apache’s Hadoop
frameworks for distributed
computing are based on a
combination of map and foldr, see
7 https://en.wikipedia.org/wiki/
MapReduce.

xs using the function f , with the value v as the result when we get to the end.
Or, reading from right to left, v is the starting value for combining the elements
of xs using f .

The following diagram gives another way of seeing what’s happening.
This way of drawing trees upside
down, with the “root” at the top and
the “leaves” at the bottom, is
standard in Informatics and
Linguistics.

:

x1 :

x2 .
.
.

:

xn []

foldr f v−−−−−→

f

x1 f

x2 .
.
.

f

xn v

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce

foldr and foldl
105 12

The tree on the left represents the expression

x1 : (x2 : (· · · : (xn : [])))

with the tree structure used in place of parentheses to represent nesting. Using
foldr f v to go from there to the tree on the right replaces [] and all occurrences
of :with v and f , respectively, without changing the structure of the expression.

We can now define sum, etc., by applying foldr to appropriate parameters:

sum :: [Int] -> Int
sum = foldr (+) 0

product :: [Int] -> Int
product = foldr (*) 1

and :: [Bool] -> Bool
and = foldr (&&) True

concat :: [[a]] -> [a]
concat = foldr (++) []

foldr and foldl

The following question may be nagging you at this point: what does the “r” in
foldr refer to? It seems that it has something to do with “right”, but what? And
what’s the equivalent thing for “left”?

Good question! The “r” in foldr refers to the fact that the applications of
f are nested “to the right”, as can be seen from the structure of the expressions
and trees above. The relationship between the structure of the parameter list
and the result of foldr f v makes that the most natural option.

Nesting “to the left” is also possible, and that’s what the Prelude function
foldl does:

foldl f v [x1,. . .,xn] = (· · · (v f̀ ` x1) f̀ ` · · ·) f̀ ` xn

Here’s what this looks like as a tree:

:

x1 :

x2 .
.
.

:

xn []

foldl f v−−−−−→

f

f

.
.
.

f

v x1

xn−1

xn

If f is associative and commutative then the results of foldr and foldl will
be the same. This is the case for all of the uses of foldr above, so we could
instead define

sum :: [Int] -> Int
sum = foldl (+) 0

product :: [Int] -> Int
product = foldl (*) 1

12

106 Chapter 12 · Higher-Order Functions

and :: [Bool] -> Bool
and = foldl (&&) True

concat :: [[a]] -> [a]
concat = foldl (++) []

Here’s an example where they are different:

cumulativeDivide :: Int -> [Int] ->Int
cumulativeDivide i = foldl div i

cumulativeDivide, which produces the quotient of its first parameter by all of
the integers in its second parameter, is a possible component of a function for
factorising integers. Using foldr in place of foldl gives a completely different
function.

If we define a version of : with the parameters in the opposite order

(<:) :: [a] -> a -> [a]
xs <: x = x : xs

then we can use foldl to reverse a list

reverse :: [a] -> [a]
reverse = foldl (<:) []

while foldr (<:) [] causes a type error, and foldr (:) [] is just the identity
function on lists. (This requires a more general type for foldr, see Exercise 2.)

foldr1 and foldl1 are variants of foldr and foldl for use on lists that are
guaranteed to be non-empty. In that case, no “starting value” is required: the
last element of the list (for foldr1) or first element (for foldl1) can be used
instead. Here is the definition of foldr1:

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [] = error "empty list"
foldr1 f [x] = x
foldr1 f (x:xs) = x `f` (foldr1 f xs)

We can define the Prelude function maximum, which doesn’t make sense for an
empty list, using foldr1 (or foldl1) and max:

maximum :: [Int] -> Int
maximum = foldr1 max

Combining map, filter and foldr/foldl

The patterns of computation that are captured by map and filter are familiar
from earlier examples using list comprehensions, and these two functions can
be combined to give the same result as many list comprehensions. For example,
consider a function that doubles all of the prime numbers in a list:

dblPrimes :: [Int] -> [Int]
dblPrimes ns = [2*n | n <- ns, isPrime n]

dblPrimes' :: [Int] -> [Int]
dblPrimes' ns = map dbl (filter isPrime ns)

where dbl x = 2*x

In general,

map f (filter p xs) = [f x | x <- xs, p x]

and for multiple guards

map f (filter p (filter q xs)) = [f x | x <- xs, p x, q x]

Curried Types and Partial Application
107 12

Adding an application of foldr or foldl is required for examples that
involve the use of an accumulator. Looking at the example of the sum of the
squares of the odd numbers in a list:

sumSqOdds :: [Int] -> Int
sumSqOdds ns = sum [n*n | n <- ns, odd n]

sumSqOdds' :: [Int] -> Int
sumSqOdds' ns = foldr (+) 0 (map sqr (filter odd ns))

where sqr x = x*x

Curried Types and Partial Application

In Haskell, functions with two parameters are usually defined to have a
type of the form s -> t -> u, and analogously for larger values of two. For
example, the type of div is Int -> Int -> Int, and the type of max3 is A type like Int -> Int -> Int is

called a “curried” type, with the
alternative (Int,Int) -> Int being
called an “uncurried” type. The
name comes from American
mathematician and logician Haskell
B. Curry (1900−1982), see 7 https://
en.wikipedia.org/wiki/
Haskell_Curry. Curry developed
combinatory logic, used in
Informatics as a simplified model of
computation. A well-known
programming language is also
named after him.

Int -> Int -> Int -> Int. An alternative would be to combine the param-
eters into a tuple, which for div would give the type (Int,Int) -> Int.

One reason for not combining the parameters into a tuple is to allow partial
application. We’ve seen this when defining functions like sum by instantiating
the pattern of computation that is captured in foldr:

sum :: [Int] -> Int
sum = foldr (+) 0

The type of foldr is (a -> a -> a) -> a -> [a] -> a. Applying it to + gives a
function of type Int -> [Int] -> Int—this is the function that adds all of the
integers in a list (the second parameter) to an integer (the first parameter)—and
then applying this function to 0 gives sum :: [Int] -> Int.

Simpler examples of partial application are the application of + to 1, to get
a function for increasing a number by 1; the application of <= to 0, to get a
function for testing if an integer is positive; and the application of ˆ to 2, for
computing powers of 2.

increment :: Int -> Int
increment = (+) 1

isPositive :: Int -> Bool
isPositive = (<=) 0

pow2 :: Int -> Int
pow2 = (ˆ) 2

This only works when we need to partially apply a function to its first
Unfortunately, sections don’t work
for partially applying subtraction to
its second parameter: (- 1) is the
negative number −1.

parameter(s). Haskell provides a handy notation, called sections, for writing the
partial application of an infix function to either of its two parameters. A section
is written by surrounding an infix function with parentheses and supplying one
of its parameters, for example:

pow2 = (2 ˆ)
isVowel = (`elem` "aeiouAEIOU")
squares = map (ˆ 2)

A section yields a function from the missing parameter to the result.
Let’s take a closer look at the type Int -> Int -> Int. All infix opera-

tors, including ->, come with a precedence—for instance, * and / have higher
precedence than + and -, as in arithmetic—and an associativity. These attributes

You might think that right/left
associativity of + doesn’t matter,
since addition is associative,
(a+ b)+ c = a+ (b+ c). Except that
this doesn’t actually hold for
computer arithmetic: compare
(1e100 + (-1e100)) + 1 and
1e100 + ((-1e100) + 1) in Haskell.

determine howHaskell understands expressions in which the operator appears.

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/Haskell_Curry

12

108 Chapter 12 · Higher-Order Functions

Many operators are left associative, for instance +, so a + b + cmeans (a + b) + c.
But the function-type operator -> is right associative, so Int -> Int -> Int
means Int -> (Int -> Int). (Likewise for :, as mentioned earlier, so 1:2:3:[]
means 1:(2:(3:[])).)

On the other hand, the function application operation that is being used in
expressions like f x is left associative, so (+) 1 2 means ((+) 1) 2. But all of
this fits perfectly together:

(+) :: Int -> Int -> Int means (+) :: Int -> (Int -> Int)
so ((+) 1) :: Int -> Int
so ((+) 1) 2 :: Int

i.e. (+) 1 2 :: Int

The ability to use partial application is what makes it possible to write
function definitions like

sum :: [Int] -> Int
sum = foldr (+) 0

in place of the slightly longer windedThe first definition of sum is written
in so-called point-free style, while the
second definition is written in pointed
style, referring to “points” in the
parameter space. See 7 https://wiki.
haskell.org/Pointfree. People who
find point-free style hard to
understand call it “pointless” style.

sum :: [Int] -> Int
sum ns = foldr (+) 0 ns

where the list parameter has been made explicit. These are equivalent; which of
them you find clearer is a matter of taste.

Exercises

1. The Prelude function all :: (a -> Bool) -> [a] -> Bool returns True if all
of the elements of its second parameter (a list) satisfy the property given in
its first parameter (a predicate). Define all in terms of map, filter and/or
foldr/foldl. Use all to define a function allPosDiv3 :: [Int] -> Bool
which returns True if all of the elements of the parameter list are both
positive and divisible by 3.

2. The type of foldr is more general than (a -> a -> a) -> a -> [a] -> a.
Work out its most general type. Hint: In the definition of foldr, suppose
v :: b and xs :: [a]. What type does f need to have?

3. Using filter, write a function rmChar :: Char -> String -> String
that removes all occurrences of a character from a string. Using foldr
or foldl, and rmChar, write a function rmChars :: String -> String ->
String that removes all characters in the first string from the second string.

4. Write a function halveEvensHO :: [Int] -> [Int] that returns half of each
even number in a list. Use map, filter and/or foldr/foldl, not recursion
or list comprehension.
Use QuickCheck to test that halveEvensHO returns the same result as
halveEvens in Exercise 5.3 and halveEvensRec in Exercise 10.2.

5. Write a function countPositivesHO to count the number of positive num-
bers in a list. Use map, filter and/or foldr/foldl, not recursion or list
comprehension.
Use QuickCheck to test that countPositivesHO returns the same result as
countPositives in Exercise 5.5 and countPositivesRec in Exercise 10.4.

https://wiki.haskell.org/Pointfree
https://wiki.haskell.org/Pointfree
https://doi.org/10.1007/978-3-030-76908-6_3
https://doi.org/10.1007/978-3-030-76908-6_2
https://doi.org/10.1007/978-3-030-76908-6_5
https://doi.org/10.1007/978-3-030-76908-6_10

Exercises
109 12

6. Write a function multDigitsRecHO :: String -> Int that returns the prod-
uct of all the digits in the input string. If there are no digits, your function
should return 1. Use map, filter and/or foldr/foldl, not recursion or list
comprehension.
Use QuickCheck to test that multDigitsHO returns the same result as
multDigits in Exercise 5.6 and multDigitsRec in Exercise 10.5.

7. Define the function foldl. What is its most general type?
8. Using recursion, define a function foldr', with the same type as foldr,

such that

foldr' f v [x1,. . .,xn] = xn f̀ ` (· · · f̀ ` (x1 f̀ ` v))

Define reverse :: [a] -> [a] as the application of foldr' to appropriate
parameters.
Now define foldr' again, this time in terms of foldr and reverse.

9. Define map f and filter p as the applications of foldr to appropriate
parameters.

10. The sentence

» Thepatterns of computation that are captured bymap andfilter are famil-
iar from earlier examples using list comprehensions, and these two functions
can be combined to give the same result as many list comprehensions.

suggests that there are some list comprehensions that cannot be captured
using map and filter. Give an example of such a list comprehension.

https://doi.org/10.1007/978-3-030-76908-6_5
https://doi.org/10.1007/978-3-030-76908-6_10

111 13

Higher and Higher

Contents

Lambda Expressions – 112

Function Composition – 113

The Function Application Operator $ – 114

Currying and Uncurrying Functions – 114

Bindings and Lambda Expressions – 115

Exercises – 116

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_13

13

112 Chapter 13 · Higher and Higher

Lambda Expressions

Sections are convenient for supplying functional arguments to higher-order
functions. For instance, we can replace

f :: [Int] -> Int
f ns = foldr (+) 0 (map sqr (filter pos ns))

where sqr x = x * x
pos x = x >= 0

which involves two helper functions, with

f :: [Int] -> Int
f ns = foldr (+) 0 (map (ˆ 2) (filter (>= 0) ns))

But sections are a very specific trick: they only work when the functional
argument is a single partially applied infix operation.

Let’s try an experiment: simply putting the definitions of the helper functions
in place of their names:

f :: [Int] -> Int
f ns = foldr (+) 0 (map (x * x) (filter (x >= 0) ns))

Unfortunately, the result is a sequence of error messages:

f.hs:2:26: error:
Variable not in scope: x :: Int -> Int

f.hs:2:30: error:
Variable not in scope: x :: Int -> Int

f.hs:2:42: error:
Variable not in scope: x :: Integer

Haskell is complaining that none of the occurrences of x makes sense. Each
of the helper functions introduces x as a formal parameter—the same one in
both helper functions, but that’s not important—and the scope of each of these
formal parameters is the body of the helper function. Using the bodies of the
helper functions without their left-hand sides removes the uses of x from the
scopes of their bindings.

So is there a way to do something similar without the need to define boring
single-use helper functions?

Yes! The key is lambda expressions: expressions denoting nameless func-
tions. Here is the example above again, this time done properly using lambda
expressions:

\x -> x * x is pronounced “lambda
ex, ex times ex”.

f :: [Int] -> Int
f ns = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x >= 0) ns))

In a lambda expression, the formal parameter—a pattern, possibly containingLambda expressions—also called
lambda abstractions—were
introduced before the invention of
computers by Alonzo Church
(1903−1995), see 7 https://en.
wikipedia.org/wiki/Alonzo_Church.
In the lambda calculus, the Greek
letter lambda (λ) starts a lambda
expression. Haskell uses a backslash
instead since it is the closest symbol
to a lambda on the keyboard.

more than one variable—follows the \, and then the function body is given
after ->. So \x -> x * x is the helper function sqr, but without that name.

Lambda expressions can be used anywhere that a function is required. To
evaluate a lambda expression applied to an actual parameter, Haskell simply
substitutes the actual parameter for the formal parameter. For instance:

(\x -> (\y -> x + y + 1)) 3 4
= (\y -> 3 + y + 1) 4
= 3 + 4 + 1
= 8

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Alonzo_Church

Function Composition
113 13

This example shows in detail what happens when a function with a curried
type—in this case, \x -> (\y -> x + y + 1) has type Int -> Int -> Int—is
applied.

However, “Haskell simply substitutes the actual parameter for the formal
parameter” hides an important point: substitution is only done within the scope
of the formal parameter. Here’s an example which showswhy that qualification
is necessary:

(\x -> (\y -> (\x -> x + y) (x + 7))) 3 4
= (\y -> (\x -> x + y) (3 + 7)) 4
= (\x -> x + 4) (3 + 7)
= (\x -> x + 4) 10
= 10 + 4
= 14

In the first step, the actual parameter 3 is substituted for the formal parameter x
but not within the inner lambda expression \x -> x + y. The reuse of the formal
parameter x here, whose scope is the expression x + y, makes a “hole” in the
scope of the outer binding of x.

Function Composition

Recall function composition from Mathematics: the composition of two
functions f : T → U and g : S → T is the function f ◦ g : S → U defined by
(f ◦ g)(x) = f (g(x)).

Function composition is the Prelude function . (dot) in Haskell, with the
same definition:

f . g is pronounced “f after g”,
taking account of the order in which
f and g are applied.

(.) :: (b -> c) -> (a -> b) -> a -> c
(f . g) x = f (g x)

This is another higher-order function, taking two functions as parameters and
producing a function as its result.

Function composition can be used as “plumbing” to join together the stages
of a computation. For instance, consider the earlier example of defining the
sum of the squares of the odd numbers in a list using map, filter and foldr:

sumSqOdds' :: [Int] -> Int
sumSqOdds' ns = foldr (+) 0 (map (ˆ 2) (filter odd ns))

The same definition can be written as follows, making the three stages of the
computation explicit as functions and joining them together in a pipeline:

sumSqOdds'' :: [Int] -> Int
sumSqOdds'' = foldr (+) 0 . map (ˆ 2) . filter odd

Function composition is associative, so it doesn’t matter whether we put in The identity element of function
composition is the identity function
id :: a -> a, defined by id x = x.

parentheses or not.
Another use for function composition is to build function parameters for

higher-order functions. To compute the squares of the non-prime numbers in
a list, we can write

squareNonprimes :: [Int] -> [Int]
squareNonprimes = map (ˆ 2) . filter (not . isPrime)

using the negation of the isPrime predicate as the actual parameter of filter.

13

114 Chapter 13 · Higher and Higher

The Function Application Operator $

Here’s the definition of another higher-order Prelude function.

($) :: (a -> b) -> a -> b
f $ x = f x

But this is simply function application. Why in the world would we want to
write f $ x instead of f x?

Here’s why. Expressions in Haskell sometimes become a little complicated,
with masses of nested parentheses, and that makes them hard to read. Visually,
it’s sometimes difficult to find the right parenthesis that matches a particular
left parenthesis. The $ operator gives you a way of avoiding parentheses in
expressions like f (g (h (j a))).

Normal function application—juxtaposition of expressions, as in j a—has
high precedence, and is left associative, so f g h j a amounts to (((f g) h) j) a. If
you instead want f (g (h (j a))), you need to add the parentheses. The function
applicationoperator $, in contrast, has very lowprecedence, and is right associa-
tive. Thus, f $ g $ h $ j $ a, with noparentheses, amounts to f $ (g $ (h $ (j $ a))),
and that has the same meaning as f (g (h (j a))). Voilà!

We can apply this little trick to get rid of some of the parentheses in the
definition of sumSqOdds' above:

sumSqOdds' :: [Int] -> Int
sumSqOdds' ns = foldr (+) 0 $ map (ˆ 2) $ filter odd ns

Currying and Uncurrying Functions

Functions with curried function types like Int -> Int -> Int are convenient
because they enable partial application, and most Haskell functions have cur-
ried types. But functions with uncurried types like (Int,Int) -> Int are some-
times required, especially in combinationwith thezip function.Here’s an exam-
ple which compares the alphabetical order of the English and German names
of numbers, using an uncurried version of the < function:This example uses the fact that the

functions <, >, etc. work on
String—and in general, on lists over
types like Char that are ordered, see
Chap. 24.

> filter (\(x,y) -> x < y)
(zip ["one", "two", "three", "four"]

["eins", "zwei", "drei", "vier"])
[("two","zwei"),("four","vier")]

The Prelude function curry “curries” an uncurried function:The idea of currying first appeared in
the work of Gottlob Frege. It was
further developed by Moses
Schönfinkel, and only later by Curry.
So alternative names would be
“fregeing” or “schönfinkelisation”.

curry :: ((a,b) -> c) -> a -> b -> c
curry f x y = f (x,y)

Becausecurry takes a function toa function, the following equivalentdefinition
might be easier to understand:

curry :: ((a,b) -> c) -> a -> b -> c
curry f = \x -> \y -> f (x,y)

The opposite conversion is also a Prelude function:

uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry f (x,y) = f x y

Bindings and Lambda Expressions
115 13

Or, using a lambda expression:

uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry f = \(x,y) -> f x y

Here’s the example above with uncurry:

> filter (uncurry (<))
(zip ["one", "two", "three", "four"]

["eins", "zwei", "drei", "vier"])
[("two","zwei"),("four","vier")]

The definitions of curry and uncurry are short and simple. Perhaps less
obvious is that theypracticallywrite themselves,with thehelpof the type system.
This is actually pretty common with higher-order functions. This point is demonstrated by Djinn

(7 https://hackage.haskell.org/
package/djinn) which takes a Haskell
type and uses a theorem prover to
produce the definition of a function
of that type if one exists.

For example, consider curry. Let’s write down the required type, and then
write curry applied to all of the formal parameters that the type requires:

curry :: ((a,b) -> c) -> a -> b -> c
curry f x y = ...

Now, what can you write on the right-hand side of the equation that has type
c, using f :: (a,b) -> c, x :: a and y :: b? The only thing that has the right
type, f (x,y), is the correct answer!

Bindings and Lambda Expressions

A Haskell program consists of a sequence of definitions of functions and vari-
ables. Individual function/variable definitions can include nested where clauses
which define additional variables and functions. All such bindings can be elim-
inated using lambda expressions. Doing this will make your programs much
harder to understand, so it’s not recommended! The point is just to show that Everything in Haskell can be

explained in terms of lambda
expressions. You could view them as
the “machine code” of functional
programming. Even lower level than
lambda expressions are combinators:
all lambda expressions can be boiled
down to expressions composed of S
and K, where S x y z = (x z) (y z)
and K x y = x, without variables or
lambdas! Combinators are like the
quarks of computing. See 7 https://
en.wikipedia.org/wiki/
Combinatory_logic.

“bare” lambda expressions are enough to express everything in Haskell.
Here’s the key transformation, where a binding is replaced by an extra

lambda expression and an application:

exp where var = exp′ −→ (\var -> exp) exp′

Let’s look at how this works on a simple expression with nested where
clauses:

f 2
where f x = x + y * y

where y = x + 1
−→
f 2
where f = \x -> (x + y * y where y = x + 1)

−→
f 2
where f = \x -> ((\y -> x + y * y) (x + 1))

−→
(\f -> f 2) (\x -> ((\y -> x + y * y) (x + 1)))

Evaluating this produces the same result as the original expression:

https://hackage.haskell.org/package/djinn
https://hackage.haskell.org/package/djinn
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Combinatory_logic

13

116 Chapter 13 · Higher and Higher

(\f -> f 2) (\x -> ((\y -> x + y * y) (x + 1)))
= (\x -> ((\y -> x + y * y) (x + 1))) 2
= (\y -> 2 + y * y) (2 + 1)
= (\y -> 2 + y * y) 3
= 2 + 3 * 3
= 11

Here’s a more complicated example, with two function definitions followed
by an expression:

f x = w ˆ 2
where w = x + 2

g y = f (y * z)
where z = y + 1

g b
where b = f 3

Before translating bindings to application of lambda expressions, we need to
reorganise this into a single expression with nested where clauses:

g b
where b = f 3

where f x = w ˆ 2
where w = x + 2

g y = f (y * z)
where z = y + 1

f x = w ˆ 2
where w = x + 2

Removing bindings gives the result:

This isn’t the whole story: properly
dealing with recursive definitions
requires the use of a fixpoint
combinator, see 7 https://en.
wikipedia.org/wiki/Fixed-
point_combinator.

(\b -> \g -> g b)
((\f -> f 3) (\x -> (\w -> w ˆ 2) (x + 2)))
(\y -> (\z -> \f -> f (y * z))

(y + 1)
(\x -> (\w -> w ˆ 2) (x + 2)))

Exercises

1. Give two definitions of the function

iter :: Int -> (a -> a) -> (a -> a)

which composes a function with itself the given number of times. One def-
inition should use recursion on natural numbers. The other should use the
Prelude function replicate :: Int -> a -> [a] to create a list of copies of
the function and foldr/foldl to compose them.

2. Define the Prelude function

flip :: (a -> b -> c) -> b -> a -> c

which reverses the order of the parameters of a function. flip is sometimes
useful if you want to partially apply a function to its second parameter
rather than its first parameter.

3. Define the Prelude functions

takeWhile :: (a -> Bool) -> [a] -> [a]
dropWhile :: (a -> Bool) -> [a] -> [a]

https://en.wikipedia.org/wiki/Fixed-point_combinator
https://en.wikipedia.org/wiki/Fixed-point_combinator
https://en.wikipedia.org/wiki/Fixed-point_combinator

Exercises
117 13

which take/drop elements as long as the given predicate holds. For example,
takeWhile isPrime [2..] == [2,3].
Use takeWhile and dropWhile to define the Prelude function
words :: String -> [String] which splits a string into words, using as
separators those characters that satisfy the predicate isSpace from the
Data.Char library module. Test that your version of words gives the same
result as Haskell’s version.

4. The Prelude function

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

applies the given function to the corresponding elements of two lists. For
example, zipWith (+) [1,2,3] [10,20,30] == [11,22,33]. Give a def-
inition of zipWith using recursion. Give another definition using zip and
map.

5. Work out the types of the following expressions, without using :t in GHCi.

• map . map
• uncurry curry
• zipWith . zipWith
• (.).(.)

Do any of them do anything useful?
6. Consider the Prelude function unzip:

unzip :: [(a,b)] -> ([a],[b])
unzip [] = ([],[])
unzip ((x,y):xys) = (x:xs,y:ys)

where (xs,ys) = unzip xys

What is its inverse? It’s not zip :: [a] -> [b] -> [(a,b)], because the types
don’t match.

7. Use structural induction to show that map (f . g) xs = map f (map g xs) for
all finite lists xs.

8. Church numerals are a way of representing the natural numbers using For more on Church numerals and
similar encodings of other types of
data, see 7 https://en.wikipedia.org/
wiki/Church_encoding.

higher-order functions: n is represented by the function of type
(a -> a) -> a -> a which maps f :: a -> a to its n-fold composition,
see Exercise 1:

type Church a = (a -> a) -> a -> a

church :: Int -> Church a
church n = iter n

succ :: Church a -> Church a
succ cm = \f -> \x -> f (cm f x)

plus :: Church a -> Church a -> Church a
plus cm cn = \f -> \x -> cm f (cn f x)

Play around with these definitions, using the following function to see the
results:

https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Church_encoding

13

118 Chapter 13 · Higher and Higher

unchurch :: Church Int -> Int
unchurch cn = cn (+ 1) 0

Once you’ve understood the definitions of succ and plus, define a func-
tion times :: Church a -> Church a -> Church a for multiplying Church
numerals.

119 14

Sequent Calculus

Contents

Combining Predicates – 120

The “Immediate” Rule – 121

DeMorgan’s Laws – 121

Sequents Again – 122

Adding Antecedents and Succedents – 123

Sequent Calculus – 126

Proofs in Sequent Calculus – 126

Exercises – 129

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_14

14

120 Chapter 14 · Sequent Calculus

Combining Predicates

Chapters 8 and 9 covered 2000 years of logic, up to the mid-nineteenth century,
but using modern notation whichmakes things much simpler.We’re now going
to study modern symbolic logic, keeping the same notation and maintainingSymbolic logic began with the work

of George Boole (1815−1864) who
invented what is now called Boolean
algebra, where variables stand for
truth values instead of numbers and
operations are conjunction,
disjunction, and negation instead of
addition, multiplication, etc. See
7 https://en.wikipedia.org/wiki/
Boolean_algebra.

consistencywithwhatwe’ve learned up to nowbut goingwell beyondAristotle’s
syllogisms. The main difference is the addition of logical connectives—not just
negation—for combiningpredicates. Thismakes it possible to build andanalyse
logical arguments that involve much more complicated statements than we’ve
seen up to now.

You’ve seen already in Chap. 8 that negation of a predicate

(¬a) x = ¬(a x)

corresponds to complement of the set of things that satisfy the predicate, with
the Haskell definition (Exercise 8.6)

neg :: Predicate u -> Predicate u
(neg a) x = not (a x)

We can give a similar definition of the conjunction a∧ b of two predicates a
and b—the predicate that’s satisfied when both a and b are true:

(a∧ b) x = a x∧ b x

As we’ve seen already, conjunction of predicates corresponds to intersection of
sets.

What does this say about a sequent involving a conjunction of predicates,
and its relationship to the sequents involving the individual predicates? The
situation is represented by the following Euler diagram:

a

b

c

This diagram shows that c � a and c � b is exactly the same as c � a ∧ b, since
a ∧ b is the intersection of a and b. In symbols:

c � a and c � b iff c ⊆ a and c ⊆ b iff c ⊆ a∩b iff c � a∧b

That justifies the following rule, which we write using a double bar since it’s
an equivalence:

c � a c � b ∧
c � a ∧ b

And we can define conjunction on predicates in Haskell (Exercise 8.6):It’s important for you to understand
that we can’t just use && for
conjunction of predicates because it
has the wrong type:
(&&) :: Bool -> Bool -> Bool. The
same applies to not vs. neg above
and || vs. |:| below.

(&:&) :: Predicate u -> Predicate u -> Predicate u
(a &:& b) x = a x && b x

We can do the same thing for disjunction. Given predicates a and b, their dis-
junction a ∨ b is the predicate that’s satisfied when either a or b is true:

https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Boolean_algebra
https://doi.org/10.1007/978-3-030-76908-6_8
https://doi.org/10.1007/978-3-030-76908-6_8
https://doi.org/10.1007/978-3-030-76908-6_8
https://doi.org/10.1007/978-3-030-76908-6_8

De Morgan’s Laws
121 14

(a∨ b) x = a x∨ b x

Disjunction of predicates corresponds to union of sets.
Considering sequents involving a disjunction of predicates, the following

Euler diagram is the counterpart of the one above for conjunction:

a

b

c

This diagram shows that a � c and b � c is exactly the same as a ∨ b � c, since
a ∨ b is the union of a and b. In symbols:

a � c and b � c iff a ⊆ c and b ⊆ c iff a∪b ⊆ c iff a∨b � c

But wait a minute. The corresponding explanation for conjunction involved
“and”, and that seemed natural because conjunction is expressed in English
using “and”. So why do we now have something for disjunction that also
involves “and”, rather than “or”? The reason is that now the disjunction is
in the antecedent of the sequent (because a and b are subsets of c) rather than
the succedent (which we had before, because c was a subset of a and b). We’ll
come to conjunction in the antecedent and disjunction in the succedent soon.

Anyway, this justifies the rule

a � c b � c ∨
a ∨ b � c

which is intuitively correct: to be sure that a ∨ b � c is valid, we need to know
that both a � c is valid (in case b is false) and that b � c is valid (in case a is
false).

And we can define disjunction on predicates in Haskell (Exercise 8.6):

(|:|) :: Predicate u -> Predicate u -> Predicate u
(a |:| b) x = a x || b x

The “Immediate” Rule

We’ll soon need the following rule. It’s so obvious that it almost doesn’t deserve
to be called a rule, so we won’t spend much time on it:

immediate
a � a

This says that the sequent a � a follows from no assumptions. An English
example of this is: every triangle is a triangle.

We will often need this rule as a way of finishing off a proof.

De Morgan’s Laws

In Exercise 1.7, we looked at two important relationships in set theory between
union, intersection, and complement, called De Morgan’s laws:

Augustus De Morgan (1806−1871)
was a British mathematician and
logician, see 7 https://en.wikipedia.
org/wiki/Augustus_De_MorganA ∪ B = Ā ∩ B̄ A ∩ B = Ā ∪ B̄

https://doi.org/10.1007/978-3-030-76908-6_8
https://doi.org/10.1007/978-3-030-76908-6_8
https://doi.org/10.1007/978-3-030-76908-6_1
https://doi.org/10.1007/978-3-030-76908-6_1
https://en.wikipedia.org/wiki/Augustus_De_Morgan
https://en.wikipedia.org/wiki/Augustus_De_Morgan

14

122 Chapter 14 · Sequent Calculus

These correspond exactly to laws in logic that involve conjunction, disjunction,There was a hint of this back in
Exercise 4.5. and negation, and that turn out to follow directly from the rules above.

We start with the following proofs built using those rules, both starting with
premises c � ¬a and c � ¬b:

c � ¬a contra-
positiona � ¬c

c � ¬b contra-
position

b � ¬c ∨
a ∨ b � ¬c

contraposition
c � ¬(a ∨ b)

c � ¬a c � ¬b ∧
c � ¬a ∧ ¬b

Both of these proofs involve only equivalences, and both of them start from the
same two premises. It follows that they can be combined to give the equivalence

c � ¬(a ∨ b)

c � ¬a ∧ ¬b

Now, we can use this equivalence in the following proofs:

immediate¬a ∧ ¬b � ¬a ∧ ¬b
¬a ∧ ¬b � ¬(a ∨ b)

immediate¬(a ∨ b) � ¬(a ∨ b)

¬(a ∨ b) � ¬a ∧ ¬b

Interpreting� as set inclusion, thismeans that¬a∧¬b ⊆ ¬(a∨b) and¬(a∨b) ⊆
¬a ∧ ¬b, that is,

¬(a∨ b) = ¬a∧¬b

which is the first of De Morgan’s laws.
The second of De Morgan’s laws arises in a similar way, see Exercise 2.

Sequents Again

Asequentwith two antecedents is valid if everything in the universe of discourse
that satisfies both of the antecedents also satisfies the succedent. This is equiv-
alent to a sequent with a single antecedent that is the conjunction of those two,
since the conjunction is satisfied whenever both of the conjuncts are satisfied.
In terms of our Haskell implementation, the following are all equivalent:

and [c x | x <- things, a x, b x]
= and [c x | x <- things, a x && b x]
= and [c x | x <- things, (a &:& b) x]

It follows that a proof that a sequent a, b � c is valid also shows that the sequent
a ∧ b � c is valid. That gives us the rule

a, b � c

a ∧ b � c

So now we have two rules for conjunction: one for conjunction on the left
of a sequent, and one for conjunction on the right of a sequent. Let’s give them
names which include that information:

a, b � c ∧L
a ∧ b � c

c � a c � b ∧R
c � a ∧ b

What about disjunction? So far, we have a rule for disjunction on the left:

https://doi.org/10.1007/978-3-030-76908-6_4
https://doi.org/10.1007/978-3-030-76908-6_4

Adding Antecedents and Succedents
123 14

a � c b � c ∨L
a ∨ b � c

but what do we do about disjunction on the right?
Let’s see what happens when we use the other rules to work with a sequent

having a disjunction on the right.

c � a ∨ b
contraposition

¬(a ∨ b) � ¬c
De Morgan

¬a ∧ ¬b � ¬c ∧L
¬a,¬b � ¬c

contraposition??
c � a, b

The final step is like contraposition, except thatwehavemoved both antecedents
to the other side of �. But this gives a sequent with two predicates on the right!
What does that mean?

Looking at the whole thing, we have deduced—provided that the final step
is correct—that c � a, b is equivalent to c � a∨b. So, whilemultiple antecedents
(predicates on the left) corresponds to conjunction of conditions,multiple succe-
dents (predicates on the right) corresponds to disjunction. That is, a sequent

a0, a1, . . . , am−1 � s0, s1, . . . , sn−1

is valid if everything in the universe of discourse that satisfies every antecedent
predicate a0, a1, . . . , am−1 satisfies at least one of the succedent predicates
s0, s1, . . . , sn−1. In symbols:

� � � if
∧

� ⊆
∨

�

(The upper caseGreek letters� and� are traditionally used for the antecedents � is pronounced “Gamma” and � is
pronounced “Delta”.and succedents of sequents.)

And with this interpretation, the following rule deals with disjunction on
the right:

c � a, b ∨R
c � a ∨ b

Up until now we’ve been working with the special case of sequents where
there was only one succedent, s0. We’re going to consider the general case
from now on. Disjunctive succedents are a little harder to understand than
the conjunctive antecedents we’ve been using up to now, but we need them to
give a good set of rules.

Adding Antecedents and Succedents

We’ve seen that a � b (every a is b) can be drawn as a Venn diagram with a
region that’s designated as empty:

a b

14

124 Chapter 14 · Sequent Calculus

What does it mean to add an additional antecedent g to this sequent to give
g, a � b?

Instead of adding a circle to the Venn diagram for g, let’s draw a line to
separate everything for which g is true (the light grey top part of the diagram)
from everything for which g is false (the white bottom part):

a b

g

¬g

We know that g, a � b is valid if all of the things in the universe that satisfy
both g and a also satisfy b. But looking at it in another way, g carves out a
subset of the universe, the part where g is true, {x ∈ Universe | g x}. Then,
g, a � b is valid provided a � b is valid in that subset of the universe.

For this to be true, the region of a inside g but outside b needs to be empty.
It doesn’t matter what happens in the other part of the diagram, where g is false.
So adding antecedents can be seen as focusing attention on a smaller universe.

The same reasoning holds if we add more than one antecedent, with essen-
tially the same diagram for �, a � b:

a b

That is, �, a � b is valid if a � b is valid in {x ∈ Universe | ∧
� x}. Here, we’re

focusing attention on the part of the universe in which everything in � is true.
Now let’s look at what itmeans to add an additional succedent d to a sequent

a � b to give a � b, d . To explain this, we need the following rule for negation
on the left of a sequent, which can be viewed as half of contraposition:

Proving soundness of ¬L is part of
Exercise 4.

a � b, d ¬L
¬d, a � b

The sequent on the top of the rule is the one we’re interested in, but the rule says
that it’s equivalent to the sequent on the bottom of the rule, so here’s a diagram
corresponding to that one:

a b
¬d

Taking the rule into account, a � b, d is valid if a � b is valid in the subset of
the universe where d is false, namely {x ∈ Universe | ¬d x}.

Adding Antecedents and Succedents
125 14

If we add more than one succedent, we have the rule

a � b,�

¬∨
�, a � b

where ¬∨
� is the result of taking the disjunction of all the predicates in � to

create a single predicate which is then moved to the other side of the sequent
and negated, using the ¬L rule above.

We could instead move each of the predicates in � to the other side of the
sequent using the ¬L rule, one at a time, to give

a � b, d0, d1, . . . , dm−1

¬d0,¬d1, . . . ,¬dm−1, a � b

The result is the same, since

¬(d0∨d1∨· · ·∨dm−1) = ¬d0∧¬d1∧· · ·∧¬dm−1

by De Morgan’s laws.
The diagram is essentially the same as the one before:

a b

So a � b,� is valid if a � b is valid in the subset of the universe where all of
the predicates in � are false, namely {x ∈ Universe | ¬∨

� x}.
Putting these together gives the following diagram:

a b

which says that �, a � b,� is valid if a � b is valid in the subset of the universe
{x ∈ Universe | ∧

� x∧ ¬∨
� x}, where all of the predicates in � are true and

all of the predicates in � are false.
The upshot is that, since the following rules apply in any universe:

a, b � c ∧L
a ∧ b � c

c � a c � b ∧R
c � a ∧ b

a � c b � c ∨L
a ∨ b � c

c � a, b ∨R
c � a ∨ b

the following rules are sound, with arbitrary sets of additional antecedents and
succedents—the same ones added to all of the premises and to the conclusion
of the rule:

14

126 Chapter 14 · Sequent Calculus

�, a, b � c,� ∧L
�, a ∧ b � c,�

�, c � a,� �, c � b,� ∧R
�, c � a ∧ b,�

�, a � c,� �, b � c,� ∨L
�, a ∨ b � c,�

�, c � a, b,� ∨R
�, c � a ∨ b,�

since the additional antecedents and succedents simply restrict to the subset of
the universe in which all of the predicates in � are true and all of the predicates
in � are false.

Finally, renaming c,� as� in∧L and∨L and �, c as � in∧R and∨R gives
the final versions of these rules:

�, a, b � � ∧L
�, a ∧ b � �

� � a,� � � b,� ∧R
� � a ∧ b,�

�, a � � �, b � � ∨L
�, a ∨ b � �

� � a, b,� ∨R
� � a ∨ b,�

Sequent Calculus

To complete the set of rules, we add the “immediate” rule from above, with
additional antecedents and succedents, and rules for negation on the left and
right of a sequent, to the rules for conjunction and disjunction above. This
generalised formof the immediate rule is obviously sound: if all of the predicates
in �, a are true, then one of the predicates in a,� is true, namely a. For the
soundness of ¬L and ¬R, see Exercise 4.

I
�, a � a,�

� � a,� ¬L
�,¬a � �

�, a � � ¬R
� � ¬a,�

These are the rules of the sequent calculus.The idea of sequent and the elegant
and symmetric rules of the sequent
calculus are due to the German
logician Gerhard Gentzen
(1909−1945), see 7 https://en.
wikipedia.org/wiki/
Gerhard_Gentzen.

We will generally be building proofs from these rules “bottom-up”, start-
ing from a desired conclusion and working upwards to discover from which
premises that conclusion follows.At each stage, one connective (∧,∨,¬) is elim-
inated. The names of the rules therefore refer to the connective in the sequent
below the line that the rule eliminates, and where in the sequent—left (L) or
right (R)—it appears.

We’ve been writing the antecedents and succedents of sequents as lists, with
the notation a,� suggesting that a is added to the front of�, but they’re actually
(finite) sets. So order doesn’t matter—the predicate containing a connective
that a rule eliminates can occur anywhere in the antecedents/succedents of the
sequent. It’s not required to be the last antecedent or the first succedent, which
the format of the rules appears to suggest. We could use a notation like {a} ∪�

instead, but using commas is less clumsy.

Proofs in Sequent Calculus

I
�, a � a, �

� � a, �
¬L

�, ¬a � �

�, a � �

¬R
� � ¬a, �

�, a, b � �

∧L
�, a ∧ b � �

� � a, � � � b, �
∧R

� � a ∧ b, �

�, a � � �, b � �

∨L
�, a ∨ b � �

� � a, b, �
∨R

� � a ∨ b, �

The sequent calculus

Let’s do a proof with the rules of the sequent calculus.
We’ll start with the conclusion� ((¬p∨q)∧¬p)∨p andwork upwards, using

the rules to eliminate connectives until we have a set of premises—which will
be so-called simple sequents involving only “bare” predicates, not containing
any connectives—from which the conclusion follows. At each step, we’ll apply
a rule to the “main” connective on the left or the right.

https://en.wikipedia.org/wiki/Gerhard_Gentzen
https://en.wikipedia.org/wiki/Gerhard_Gentzen
https://en.wikipedia.org/wiki/Gerhard_Gentzen

Proofs in Sequent Calculus
127 14

Given the sequent � ((¬p∨q)∧¬p)∨p, we can only apply rules that operate
on the right since there’s nothing on the left. The main connective is ∨, which
combines (¬p∨q)∧¬p and p to form ((¬p∨q)∧¬p)∨p, so we need to use the
∨R rule. We can’t use ∧R or ¬R to eliminate the other connectives in ((¬p ∨
q) ∧ ¬p) ∨ p, and we can’t apply ∨R to eliminate the other instance of ∨, since
they’re nested inside the “main” application of∨. Applying the∨R rule—where
� and� are both the empty set of predicates, a is (¬p∨q)∧¬p and b is p—gives

� (¬p ∨ q) ∧ ¬p, p ∨R
� ((¬p ∨ q) ∧ ¬p) ∨ p

We now have two predicates on the right. The second one, p, can’t be
reduced. So, we apply the ∧R rule, which eliminates the main connective, ∧, of

I
�, a � a,�

� � a,�
¬L

�,¬a � �

�, a � �

¬R
� � ¬a, �

�, a, b � �

∧L
�, a ∧ b � �

� � a,� � � b, �
∧R

� � a ∧ b,�

�, a � � �, b � �

∨L
�, a ∨ b � �

� � a, b,�
∨R

� � a ∨ b, �

The sequent calculus

the first one. In this rule application, � is empty, � = {p}, a is ¬p ∨ q and b is
¬p. That gives:

� ¬p ∨ q, p � ¬p, p ∧R
� (¬p ∨ q) ∧ ¬p, p ∨R

� ((¬p ∨ q) ∧ ¬p) ∨ p

Wenow have two premises, which we have to consider separately. Starting with
the first one, we can apply ∨R again to get

� ¬p, q, p ∨R
� ¬p ∨ q, p � ¬p, p ∧R

� (¬p ∨ q) ∧ ¬p, p ∨R
� ((¬p ∨ q) ∧ ¬p) ∨ p

Continuing, we eventually get to the following proof, which shows that
� ((¬p ∨ q) ∧ ¬p) ∨ p follows from the empty set of premises:

I
p � q, p

¬R
� ¬ p, q, p

∨R
� ¬p ∨ q, p

I
p � p

¬R
� ¬ p, p

∧R
� (¬p ∨ q) ∧ ¬ p, p

∨R
� ((¬p ∨ q) ∧ ¬p) ∨ p

(In each step, the main connective—or the matching predicates, in the immedi-
ate rule—is indicated with a box.) Because there’s an empty set of premises, this
proof shows that the sequent � ((¬p ∨ q) ∧ ¬p) ∨ p is valid in every universe.
Such a sequent is called universally valid.

Let’s look at a slightly more complicated example, and try to prove the
conclusion � ¬((¬a∨ b) ∧ (¬c∨ b)) ∨ (¬a∨ c). Applying the same procedure,
which stops once no further rule can be applied, we obtain the following proof:

14

128 Chapter 14 · Sequent Calculus

Make sure that you understand every
step in this proof!

I
¬a ,¬c ∨ b � ¬a , c

a, b � c ¬R
b � ¬a , c

¬L
b, ¬c � ¬a, c

a, b � c ¬R
b � ¬a , c

∨L
b,¬c ∨ b � ¬a, c

∨L
¬a ∨ b,¬c ∨ b � ¬a, c

∧L
(¬a ∨ b) ∧ (¬c ∨ b) � ¬a, c

∨R
(¬a ∨ b) ∧ (¬c ∨ b) � ¬a ∨ c

¬R
� ¬ ((¬a ∨ b) ∧ (¬c ∨ b)),¬a ∨ c

∨R
� ¬((¬a ∨ b) ∧ (¬c ∨ b)) ∨ (¬a ∨ c)

The same premise appears twice in the proof, but we’re interested in the set
of premises from which the conclusion follows, so using it twice doesn’t matter.
Remember, the antecedents and succedents of each sequent are also sets, which

I
�, a � a,�

� � a, �
¬L

�, ¬a � �

�, a � �

¬R
� � ¬a,�

�, a, b � �

∧L
�, a ∧ b � �

� � a,� � � b,�
∧R

� � a ∧ b,�

�, a � � �, b � �

∨L
�, a ∨ b � �

� � a, b,�
∨R

� � a ∨ b,�

The sequent calculus

is why we wrote
b,¬c � ¬a, c b � ¬a, c ∨L

b,¬c ∨ b � ¬a, c

rather than
b,¬c � ¬a, c b, b � ¬a, c ∨L

b,¬c ∨ b � ¬a, c

at the bottom of the right-hand branch of the proof.
This proof shows that � ¬((¬a∨ b) ∧ (¬c∨ b)) ∨ (¬a∨ c) follows from the

single premise a, b � c, meaning that it’s valid whenever that sequent is valid.
More than that: since all of the rules are equivalences, it also shows that a, b � c
is valid whenever � ¬((¬a∨ b) ∧ (¬c∨ b)) ∨ (¬a∨ c) is valid. That is, it shows
that the following equivalence is sound:

a, b � c

� ¬((¬a ∨ b) ∧ (¬c ∨ b)) ∨ (¬a ∨ c)

It also tells us that any x in the universe for which a x and b x are both true and
c x is false would be a counterexample to the conclusion, since it’s a counterex-
ample to the premise. If there’s more than one premise, then a counterexample
to any one of them gives a counterexample to the conclusion.

Notice that there are other possible proofs of � ¬((¬a ∨ b) ∧ (¬c ∨ b)) ∨
(¬a∨ c), obtained by choosing a different connective to eliminate when there’s
more than one possibility. For example, in the second step (counting from the

When there’s a choice between a rule
having two premises, like ∨R, and a
rule having one premise, like ¬R, it’s
generally better to apply the rule
having one premise. Both rules will
need to be applied eventually, and
applying the rule with two premises
first would lead to the other rule
needing to be applied twice, once on
each branch.

bottom),we applied¬R to the first succedent, butwe could have instead applied
∨R to the second succedent. But all proofs lead to the same set of premises.

Using these rules, the procedure of constructing a proof will always ter-
minate. That’s easy to see, because each rule eliminates one connective. The
starting sequent can only contain a finite number of connectives, and that lim-
its the maximum possible depth of the proof.

Exercises
129 14

I
�, a � a,�

� � a,�
¬L

�,¬a � �

�, a � �

¬R
� � ¬a, �

�, a, b � �

∧L
�, a ∧ b � �

� � a,� � � b, �
∧R

� � a ∧ b,�

�, a � � �, b � �

∨L
�, a ∨ b � �

� � a, b,�
∨R

� � a ∨ b, �

The sequent calculus

Exercises

1. See Exercise 8.5 for Haskell definitions of validity of sequents with one
antecedent and one succedent, and of sequents with a list of antecedents
and one succedent. Give a Haskell definition of validity of sequents in the
general case, with a list of antecedents and a list of succedents. Test that the
previous definitions are special cases of this general definition.
Hint: To do QuickCheck tests involving predicates, you’ll need to include
the following code, with the first line at the top of your file:

{-# LANGUAGE FlexibleInstances #-}
instance Arbitrary Thing where

arbitrary = elements [R, S, T, U, V, W, X, Y, Z]

instance CoArbitrary Thing where
coarbitrary R = variant 0
coarbitrary S = variant 1
coarbitrary T = variant 2
coarbitrary U = variant 3
coarbitrary V = variant 4
coarbitrary W = variant 5
coarbitrary X = variant 6
coarbitrary Y = variant 7
coarbitrary Z = variant 8

instance Show (u -> Bool) where
show p = "a predicate"

If a test case fails,QuickCheckwon’t be able to showyou the failingpredicate
because it’s a function.

2. Derive the second of De Morgan’s laws

¬(a∧b) = ¬a∨¬b

using an argument like the one above for the first law.
3. The addition of a succedent d to a sequent a � b to give a � b, d was

explained using the diagram

a b
¬d

Use the same circles and lines, with the same identification (a, b, d) as above,
tomake a diagram to explain the addition of a succedent b to a sequent a � d
to give a � b, d .

4. Explain why the ¬L and ¬R rules are sound.

https://doi.org/10.1007/978-3-030-76908-6_8
https://doi.org/10.1007/978-3-030-76908-6_8

14

130 Chapter 14 · Sequent Calculus

I
�, a � a,�

� � a, �
¬L

�, ¬a � �

�, a � �

¬R
� � ¬a,�

�, a, b � �

∧L
�, a ∧ b � �

� � a,� � � b,�
∧R

� � a ∧ b,�

�, a � � �, b � �

∨L
�, a ∨ b � �

� � a, b,�
∨R

� � a ∨ b,�

The sequent calculus

5. Do a proof that reduces the conclusion (x ∧ y) ∨ (x ∧ z) � x ∧ (y ∨ z) to
premises that can’t be reduced further. Is it universally valid? If not, give a
counterexample.

6. Do proofs which reduce the conclusions ¬a∧¬b � ¬(a∧b) and ¬(a∧b) �
¬a ∧ ¬b to premises that can’t be reduced further. Is one or both univer-
sally valid? If not, give a counterexample. If so, explain how that shows that
¬a ∧ ¬b = ¬(a ∧ b).

7. (a) Consider a rule like

�, c � a,� �, c � b,� ∧R
�, c � a ∧ b,�

that has two premises. Turning it upside down gives a rule with two
conclusions. What interpretation of rules with two conclusions makes
this rule sound, as required for ∧R to be an equivalence?

(b) The only rule in the sequent calculus that has not been written as an
equivalence is the immediate rule:

I
�, a � a,�

Show that this rule is actually also an equivalence. (Hint: first, generalise
your answer to (a) to the case of rules with n �= 1 premises.)

8. (a) Show that De Morgan’s Laws are universally valid (that is, ¬(a ∨ b) �
¬a∧¬b and¬a∧¬b � ¬(a∨b), and likewise for the otherDeMorgan’s
Law) using sequent calculus.

(b) Show that De Morgan’s Laws are sound using truth tables.

131 15

Algebraic Data Types

Contents

More Types – 132

Booleans – 132

Seasons – 133

Shapes – 134

Tuples – 136

Lists – 137

Optional Values – 138

Disjoint Union of Two Types – 139

Exercises – 140

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_15

15

132 Chapter 15 · Algebraic Data Types

More Types

So far, we’ve done a lot using the types that come “out of the box”withHaskell.
The type of lists has been particularly useful, and higher-order functions have
revealed the power of the function type ->. Both of these actually provide an
infinite number of types: there is a type [t] for every type t and a type s -> t
for every s and t.

But there’s more to come, because Haskell provides a powerful mechanism
called algebraic data types for you to define your own types. In fact, most ofThese are called algebraic data

types because new types are created
by taking the sum of products of
existing types, like polynomials in
algebra, see 7 https://en.wikipedia.
org/wiki/Algebraic_data_type.

the types that you have seen up to now—including lists—could have been left
out of Haskell, for you to define yourself. It’s useful to have them built in, so
that Haskell can provide some special notation for them, and lots of handy
pre-defined functions. But the fact that you can define lists yourself, and all of
the functions over them, means that having them built in is just a convenience.

Haskell’s syntax for type definitions is pretty simple but you need to see lots
of examples to appreciate what you can do with it. So, we’re going to approach
this via a sequence of examples, starting with simple ones and then building up.

Booleans

Our first example is the built-in type Bool of Boolean values. This is review
because we already saw how Bool was defined back in Chap. 2:

data Bool = False | True

This is a very simple example of an algebraic data type. Let’s look at the details
before going on to more complex examples.

First, “data” says that this is an algebraic data type definition. The type
being defined, Bool, is on the left-hand side of the definition. As with all types,
its name begins with an upper case letter. On the right-hand side is a list ofList types, function types, and tuple

types don’t have names that begin
with an upper case letter, because
their names are composed of
symbols rather than letters.

all of the ways of forming a value of that type, separated by vertical bars. In
this case there are just two values, False and True, and they are “formed” by
simply writing their names. Their names begin with an upper case letter because
they are constructors. This means that they can be used in patterns, as in the
following definitions of Boolean equality and conversion from Bool to String:

eqBool :: Bool -> Bool -> Bool
eqBool False False = True
eqBool True True = True
eqBool _ _ = False

showBool :: Bool -> String
showBool False = "False"
showBool True = "True"

(Because False and True are literal values, they can be used in patterns even
if they weren’t constructors. But soon we’ll see examples where that isn’t the
case.)

The algebraic data type definition above is a complete definition of the type
Bool. Note in particular that there is no need to define a representation of the
values False and True in terms of values of some other type. Conceptually,
values of type Bool are simply the expressions False and True. Of course, the
computer’s internal representation of Bool and all other data is in terms of
bits, but we don’t need to know any of the details of how that works to write
programs.

https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type

Seasons
133 15

Seasons

Our next example is for the seasons of the year:

data Season = Winter | Spring | Summer | Fall

This is similar to Bool but with four constructors instead of two. Bool and
Seasons are called enumerated types because they are defined by simply listing
(i.e. enumerating) their values. The types Weekday on page 10 and Thing on
page 46 are other examples.

Here are functions for computing the next season, for equality of seasons,
and for converting from Season to String:

It’s very tempting to write
eqSeason s s = True
to cover the first four cases of this
definition, but that doesn’t work:
remember that repeated variables in
patterns aren’t allowed!

next :: Season -> Season
next Winter = Spring
next Spring = Summer
next Summer = Fall
next Fall = Winter

eqSeason :: Season -> Season -> Bool
eqSeason Winter Winter = True
eqSeason Spring Spring = True
eqSeason Summer Summer = True
eqSeason Fall Fall = True
eqSeason _ _ = False

showSeason :: Season -> String
showSeason Winter = "Winter"
showSeason Spring = "Spring"
showSeason Summer = "Summer"
showSeason Fall = "Fall"

The definitions of eqSeason and showSeason (and the earlier definitions of
eqBool and showBool) are boring, but they’re required for computing equality
and for displaying values of type Season. Luckily, we can get Haskell to work
out these definitions automatically for itself by adding a magic incantation to
the type definition:

data Season = Winter | Spring | Summer | Fall deriving (Eq,Show)

This use of the type classes Eq and Show, and how type classes work in general,
will be explained in Chap. 24.

Not only does this incantation define these functions automatically; it also
makes Haskell incorporate them into the built-in == and show functions. The
latter is used to display values when working interactively. Observe the differ-
ence between the first and second versions of the type definition:

15

134 Chapter 15 · Algebraic Data Types

> data Season = Winter | Spring | Summer | Fall
> next Winter
<interactive>:2:1: error:

• No instance for (Show Season) arising from a use of ‘print’
• In a stmt of an interactive GHCi command: print it

> Winter == Spring
<interactive>:3:1: error:

• No instance for (Eq Season) arising from a use of ‘==’
• In the expression: Winter == Spring

In an equation for ‘it’: it = Winter == Spring

> data Season = Winter | Spring | Summer | Fall deriving (Eq,Show)
> next Winter
Spring
> Winter == Spring
False

The error messages refer to it
because that’s the name that Haskell
gives to the last expression typed
during an interactive session. This
allows convenient reference to the
last thing typed.

If “deriving (Eq,Show)” is left out, then Haskell can’t display the result of
computations producing values of type Season or compare them using ==.
Both things work when “deriving . . .” is added.

Another way of defining the functions next and eqSeason is in terms of
functions that convert back and forth from Season to Int:

toInt :: Season -> Int
toInt Winter = 0
toInt Spring = 1
toInt Summer = 2
toInt Fall = 3

fromInt :: Int -> Season
fromInt 0 = Winter
fromInt 1 = Spring
fromInt 2 = Summer
fromInt 3 = Fall

next :: Season -> Season
next x = fromInt ((toInt x + 1) `mod` 4)

eqSeason :: Season -> Season -> Bool
eqSeason x y = (toInt x == toInt y)

Defining toInt and fromInt such that fromInt (toInt s) = s allows us to
give shorter definitions of next and eqSeason.

Shapes

The types Bool and Season were defined by enumerating their values, repre-
sented by constructors. The following example of geometric shapes is different:
its values are also formed using constructors, but applied to values of another
type.

We’ll start by defining a few type synonyms, to help us remember the
intended meaning of measurements used in defining geometric shapes:

type Radius = Float
type Width = Float
type Height = Float

Remember that these just define
different names for Float. We have
3.1 :: Float, 3.1 :: Radius, etc.

Shapes
135 15

Now we give the type definition. To keep things simple, we’ll only use two
geometric shapes, circles and rectangles:

data Shape = Circle Radius
| Rect Width Height

deriving (Eq,Show) It is convenient and does no harm to
add “deriving (Eq,Show)” to most
algebraic data type definitions, and
we’ll do that for all of the remaining
examples. But there is a problem in
examples like
data T = C (Int -> Int)
since functions can’t be tested for
equality or printed.

The right-hand side of the definition says that there are two kinds of shapes.
One kind is formed by applying the constructor Circle to a value of type
Radius. The other kind is formed by applying the constructor Rect to two
values, one of type Width and one of type Height. So the constructors are
functions, Circle :: Radius -> Shape and Rect :: Width -> Height ->
Shape. The expression Circle 3.1 represents a circle with radius 3.1, and the
expression Rect 2.0 1.3 represents a rectangle with width 2.0 and height 1.3.
The type of value that Circle takes as its parameter is listed after the construc-
tor name in the type definition, and the same for Rect.

We can now define the area of a shape by cases, using patternmatching with
the constructors Circle and Rect to discriminate between cases and to extract
the radius or width/height:

area :: Shape -> Float
area (Circle r) = pi * rˆ2
area (Rect w h) = w * h

The same goes for equality of shapes, which refers to equality on Float,
and for conversion from Shape to String, which refers to show for Float:

eqShape :: Shape -> Shape -> Bool
eqShape (Circle r) (Circle r') = (r == r')
eqShape (Rect w h) (Rect w' h') = (w == w') && (h == h')
eqShape _ _ = False

showShape :: Shape -> String
showShape (Circle r) = "Circle " ++ showF r
showShape (Rect w h) = "Rect " ++ showF w ++ " " ++ showF h

showF :: Float -> String
showF x | x >= 0 = show x

| otherwise = "(" ++ show x ++ ")"

showF puts parentheses around
negative numbers in order to make
showShape produce Circle (-1.7)
rather than Circle -1.7. Typing the
latter into Haskell gives a type error.Because the type definition includes “deriving(Eq,Show)”, bothof these func-

tion definitions are generated automatically and incorporated into the built-in
== and show functions.

As we’ve already seen for functions on lists, patterns with variables make
The elegant combination of algebraic
data types with pattern-matching
function definitions was first
introduced by Rod Burstall (1934−),
a British computer scientist and
Professor Emeritus at the University
of Edinburgh, see 7 https://en.
wikipedia.org/wiki/Rod_Burstall.

it possible to write simple and concise function definitions. The alternative is
to define the following functions—using pattern matching—for discriminating
between cases and extracting values:

isCircle :: Shape -> Bool
isCircle (Circle r) = True
isCircle (Rect w h) = False

isRect :: Shape -> Bool
isRect (Circle r) = False
isRect (Rect w h) = True

radius :: Shape -> Float
radius (Circle r) = r

width :: Shape -> Float
width (Rect w h) = w

https://en.wikipedia.org/wiki/Rod_Burstall
https://en.wikipedia.org/wiki/Rod_Burstall

15

136 Chapter 15 · Algebraic Data Types

height :: Shape -> Float
height (Rect w h) = h

and then using them to write the function area. Yuck!

area :: Shape -> Float
area s =

if isCircle s then
let

r = radius s
in

pi * rˆ2
else if isRect s then

let
w = width s
h = height s

in
w * h

else error "impossible"

This is the way that the computer
interprets the two-line definition of
area given above, where
let var = exp in exp′ is another way
of writing exp′ where var = exp.

Tuples

Our first example of a polymorphic data type definition defines the type of
pairs:

data Pair a b = Pair a b deriving (Eq,Show)

The type Pair Int Bool is the one that we write (Int,Bool) using Haskell’s
built-in type of pairs, with the value Pair 3 True of type Pair Int Bool being
written (3,True).

The type variables a and b are used to indicate the polymorphism, meaning
that the same definition also gives types/values like

Pair [1,2] 'b' :: Pair [Int] Char

Of course, the types used in place of a and b may be the same, as in

Pair 3.1 2.45 :: Pair Float Float

The variables a and/or b are only used once on the right-hand side of this type
definition, but this is not a requirement: they may be used multiple times, or
not at all. We’ll see an example of multiple use when we define lists in the next
section.

This type definition may look confusing because it includes an equation
with the same thing on both sides! It’s important to understand that these have
different purposes: on the left-hand side, Pair a b defines the name of the type;
on the right-hand side, Pair a b defines the name of the constructor used to
produce values of that type. Another way of writing the definition would be to
use different names for the type and the constructor:

data Pair a b = MkPair a b deriving (Eq,Show)

with MkPair 3 True :: Pair Int Bool, but the first definition is more in tune
with Haskell’s use of the same notation for types and values in examples like
(3,True) :: (Int,Bool) and [1,2] :: [Int].

The followingdefinitions of equality and the conversion frompairs to strings
are generated automatically:

Lists
137 15

eqPair :: (Eq a, Eq b) => Pair a b -> Pair a b -> Bool
eqPair (Pair x y) (Pair x' y') = x == x' && y == y'

showPair :: (Show a, Show b) => Pair a b -> String
showPair (Pair x y) = "Pair " ++ show x ++ " " ++ show y
Since equality of pairs relies on equality of the pair’s components, we can only
check equality of a pair of type Pair t swhen ==works on both of the types t and
s. That’swhat “(Eqa,Eqb)=>” in the typeofeqPairmeans.A similar comment
applies to the type of showPair, where what is required of the component types
is that show can be used to convert their values to strings. This use of Eq, which
is the same as we’ve seen earlier, will be explained in more detail in Chap. 24.
Ditto for Show.

We need a separate definition for the type of triples:

data Triple a b c = Triple a b c deriving (Eq,Show)
and the same for n-tuples for any other n.

Lists

Recall the definition of Haskell’s built-in type of lists from Chap. 10:

Definition. A list of type [t] is either

1. empty, written [], (empty list) or
2. constructed, written x : xs, with head x (an element of type t) and tail xs (a

list of type [t]).

A definition of lists as a polymorphic algebraic data type says precisely the
same thing in symbols, with the name Nil instead of [] and the name Cons
instead of infix : to avoid clashes with built-in lists:

data List a = Nil
| Cons a (List a)

deriving (Eq,Show)
This example demonstrates the use of recursion in algebraic data type def-

initions, by using the name of the type being defined—in this case, List—on
the right-hand side of the definition. How this works for building values of type
List is exactly as explained earlier for built-in lists:

Compare this explanation of
Cons 4 (Cons 6 (Cons 8 Nil))
:: List Int with the explanation
of why 4:(6:(8:[])) is a list of
type [Int] on page 82.

• Nil is a value of type List Int, since Nil :: List a;
• and so Cons 8 Nil is a value of type List Int, since

Cons :: a -> List a -> List a;
• and so Cons 6 (Cons 8 Nil) is a value of type List Int;
• and so Cons 4 (Cons 6 (Cons 8 Nil)) is a value of type List Int.

As in our previous examples, Nil and Cons are constructors and so can
be used in pattern-matching function definitions. For example, the following
definition of append for List a is the same as the definition of ++ for [a] on
page 96:

append :: List a -> List a -> List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)
Note once more how the pattern of recursion in the function definition mirrors
the recursion in the type definition. We will see the same thing with definitions
of other algebraic data types below that involve recursion.

15

138 Chapter 15 · Algebraic Data Types

What we don’t get with the above data type definition is Haskell’s special
notations for lists, such as[True,False,False],[1..10], and list comprehen-
sion notation. We also don’t get Haskell’s identification of String with List
Char, or string notation "Haskell!".

Optional Values

There are situations in which a function is required to return a value but there is
no sensible value to return. An example is the division function, where division
by zero is undefined.

Onewayof dealingwith such a situation is to generate an error, which causes
computation to halt:

> 3 `div` 0
*** Exception: divide by zero

The error in this example was
produced by applying the Prelude
function error to the string "divide
by zero". Another involves use of the built-in type Maybe to indicate that the function

will return an optional value as its result, for which one of the possible values
represents absence of a value. That probably sounds confusing, so let’s look at
how Maybe is defined and how it’s used.

The definition is simple:

data Maybe a = Nothing | Just a
deriving (Eq,Show)

Maybe is a polymorphic type, with Maybe t being for optional values of type t.
There are two constructors: one (Nothing) indicating absence of a value; and
one (Just :: a -> Maybe a) for when a value is present. To show how that
works, here’s a version of integer division that returns an optional value of type
Int:

myDiv :: Int -> Int -> Maybe Int
myDiv n 0 = Nothing
myDiv n m = Just (n `div` m)

Then we get:

> 3 `myDiv` 0
Nothing
> 6 `myDiv` 2
Just 3

Another example is the Prelude function lookup which searches a list ofA list of pairs used in this way is
called an association list, see
7 https://en.wikipedia.org/wiki/
Association_list.

pairs for a pair whose first component matches a given key and returns its
second component:

lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,y):xys) | key == x = Just y

| otherwise = lookup key xys

The result type is Maybe b rather than b because there may be no such pair in
the list. In that case, lookup returns Nothing. If it does find a matching pair
(x,y), it returns Just y.

Maybe can also be used in the type of an optional function parameter. This
can be useful when there is a default value for the parameter which can be
overridden by supplying a different value.

The following function raises the first parameter to the power given by the
second parameter. When the first parameter is absent (Nothing), the default
value of 2 is used:

https://en.wikipedia.org/wiki/Association_list
https://en.wikipedia.org/wiki/Association_list

Disjoint Union of Two Types
139 15

power :: Maybe Int -> Int -> Int
power Nothing n = 2 ˆ n
power (Just m) n = m ˆ n

Then:

> power Nothing 3
8
> power (Just 3) 3
27

The fact that Haskell’s type system keeps careful track of the distinction
between the type t and the type Maybe tmeans that some extra work is required
when supplying and using optional values. Obviously, power won’t work if you
simply omit the first parameter, relying onHaskell to figure outwhat youmean:

> power 3
<interactive>:2:7: error:

• No instance for (Num (Maybe Int)) arising from the literal ‘3’
• In the first argument of ‘power’, namely ‘3’

In the expression: power 3
In an equation for ‘it’: it = power 3

You need to signal that there is no value for the first parameter by supplying
the parameter Nothing, as above. Similarly, if you dowant to supply a value for
the first parameter then you need to apply the constructor Just to it, yielding
a value of type Maybe Int, before passing it to power.

For the same reason, the result of a function that returns an optional result
typically needs to be unpacked before it can be used. Forgetting to do so pro-
duces a type error. For instance, the following attempt to use the result of myDiv
in an expression that requires an Int:

wrong :: Int -> Int -> Int
wrong n m = (n `myDiv` m) + 3

yields the error:

• Couldn't match expected type ‘Int’ with actual type ‘Maybe Int’
• In the expression: (n `myDiv` m) + 3

In an equation for ‘wrong’: wrong n m = (n `myDiv` m) + 3
Compilation failed.

because myDiv produces a value of Maybe Int, not Int.
Here is a corrected version of this example, in which a case expression is

used to deal with the different possible results of myDiv:
A case expression allows case
analysis via pattern matching on
values that are not function
parameters. The syntax should be
self-explanatory.

right :: Int -> Int -> Int
right n m = case n `myDiv` m of

Nothing -> 3
Just r -> r + 3

When the result is Just r, the value r :: Int is available for use in the rest of
the computation.

Disjoint Union of Two Types

The type Maybe t combines values of t with a value that indicates the absence
of a value. The built-in type Either, which has a similar definition, can be used
to combine the values of two different types into a single type:

data Either a b = Left a | Right b
deriving (Eq,Show)

15

140 Chapter 15 · Algebraic Data Types

The polymorphic type Either is used to combine two types, and so it has two
constructors: one (Left :: a -> Either a b) for values of the first type; and one
(Right :: b -> Either a b) for values of the second type. So values of the type
Either Int String are either Left n for some n :: Int or Right s for some
s :: String.

Here’s an example of the use of Either to produce a list containing both
integers and strings:

mylist :: [Either Int String]
mylist = [Left 4, Left 1, Right "hello", Left 2,

Right " ", Right "world", Left 17]

It’s important to understand that mylist is not a counterexample to the princi-
It’s tempting to omit the constructors
Left/Right—or the constructor
Just in the case of Maybe—and to
hope that Haskell will somehow
figure out what you mean. That is
unfortunately not possible: the
constructors are the key to making
polymorphic typechecking work for
algebraic data types. See 7 https://
en.wikipedia.org/wiki/Hindley-
Milner_type_system for an entry to
the relevant literature.

ple that all of the values in a Haskell list have the same type! All of the values of
mylist do have the same type, namely Either Int String. The constructors
Left and Right, which “inject” values of Int and String into that type, allow
both types of values to belong to the same list.

To show how to write code that uses values of such a type, here’s a function
that adds together all of the integers in a list like mylist:

addints :: [Either Int String] -> Int
addints xs = sum [n | Left n <- xs]

and another function that concatenates all of the strings in such a list:

The definitions of addints and
addstrs reveal a subtle difference
between patterns in function
definitions—where a missing case
can lead to an error when the
function is applied—and patterns in
comprehensions, which can be used
as here to select values from a
generator that match the pattern,
disregarding the rest.

addstrs :: [Either Int String] -> String
addstrs xs = concat [s | Right s <- xs]

Then we get

> addints mylist
24
> addstrs mylist
"hello world"

The type Either s t can be thought of as the union of the types s and t,
but note that it is actually the disjoint union. The constructors Left and Right
distinguish whether a value of Either s t comes from s or t, even if s and t are
the same type. Thus we can use it to produce a type containing two “copies” of
the values of a single type, as in Either Int Int which contains values of the
form Left n and Right n for every n :: Int.

Exercises

1. Consider the following declaration:

data Fruit = Apple String Bool
| Orange String Int

deriving (Eq,Show)

An expression of type Fruit is either an Apple or an Orange. We use a
String to indicate the variety of the apple or orange, a Bool to say whether
an apple has a worm, and an Int to count the number of segments in an
orange. For example:

Apple "Bramley" False -- a Bramley apple with no worm
Apple "Braeburn" True -- a Braeburn apple with a worm
Orange "Moro" 10 -- a Moro orange with 10 segments

https://en.wikipedia.org/wiki/Hindley-Milner_type_system
https://en.wikipedia.org/wiki/Hindley-Milner_type_system
https://en.wikipedia.org/wiki/Hindley-Milner_type_system

Exercises
141 15

(a) Write a function isBloodOrange :: Fruit -> Bool which returns True
for blood oranges and False for apples and other oranges. Blood orange
varieties are: Tarocco, Moro and Sanguinello. For example:

isBloodOrange (Orange "Moro" 12) == True
isBloodOrange (Apple "Granny Smith" True) == False

(b) Write a function bloodOrangeSegments :: [Fruit] -> Int which
returns the total number of blood orange segments in a list of fruit.

(c) Write a function worms :: [Fruit] -> Intwhich returns the number of
apples that contain worms.

2. Extend Shape and area :: Shape -> Float to include further kinds of
geometric shapes: triangles (defined by the lengths of two sides and the
angle between them); rhombuses (defined by the lengths of the diagonals);
and regular pentagons (defined by the length of a side).

3. “Wide lists” are like ordinary lists but with an additional constructor,
Append, which creates a wide list by appending two wide lists.

(a) Define an algebraic data type Widelist a.

(b) Define the following functions on wide lists:

lengthWide :: Widelist a -> Int
nullWide :: Widelist a -> Bool
reverseWide :: Widelist a -> Widelist a

(c) Define a function

fixWide : Widelist a -> [a]

which converts a wide list to an ordinary Haskell list of its elements in
the same order. Use fixWide to test that lengthWide, nullWide and
reverseWide produce the same results as the corresponding functions
on ordinary lists. To do the tests, you’ll need to include the following
code to generate random wide lists:

import Control.Monad
instance Arbitrary a => Arbitrary (Widelist a) where

arbitrary = sized list
where

list n | n<=0 = return Nil
| otherwise

= oneof [liftM2 Cons arbitrary sublist,
liftM2 Append sublist sublist]

where sublist = list (n `div` 2)

(d) Define functions for mapping and folding over wide lists:

mapWide :: (a -> b) -> Widelist a -> Widelist b
foldrWide :: (a -> b -> b) -> b -> Widelist a -> b

4. Define a function myInsertionSort :: Ord a => List a -> List a corre-
sponding to insertionSort on page 85.
Definea functiontoList::[a]->Listaanduse it to test thatmyInsertionSort
produces the same results as insertionSort.

5. Write a data type definition for natural numbers (Nat) that reflects the
definition of natural numbers on page 95. Then define functions

15

142 Chapter 15 · Algebraic Data Types

myPlus :: Nat -> Nat -> Nat
myTimes :: Nat -> Nat -> Nat
myPower :: Nat -> Nat -> Nat

Define a function toNat :: Int -> Nat and use it to test that myPlus and
myTimes produce the same results as plus and times on page 95 for param-
eters between 0 and 100. (You can check myPower against power too, but
you will need to limit the range of parameters much more severely.)

6. Define a function

createLock :: Password -> a -> Locked a

where

type Password = String
type Locked a = Password -> Maybe a

The function createLock should take a password and some data and create
a locked version of the data, such that the data in the locked version can
only be accessed by supplying the correct password. For example:

> locked = createLock "secret" 12345
> locked "wrong"
Nothing
> locked "secret"
Just 12345

7. Define the function

mapMaybe :: (a -> Maybe b) -> [a] -> [b]

(in the Data.Maybe library module) which is analogous to map except that
it throws away values of the list for which the function yields Nothing and
keeps v when the function’s result is of the form Just v.
Define composition for functions delivering a result of Maybe type:

(...) :: (b -> Maybe c) -> (a -> Maybe b) -> (a -> Maybe c)

8. Define the Prelude function

either :: (a -> c) -> (b -> c) -> Either a b -> c

that combines functions of types a -> c and b -> c to give a function of type
Either a b -> c. Use either to define a function

join :: (a -> c) -> (b -> d) -> Either a b -> Either c d

143 16

Expression Trees

Contents

Trees – 144

Arithmetic Expressions – 144

Evaluating Arithmetic Expressions – 146

Arithmetic Expressions with Infix Constructors
– 147

Propositions – 147

Evaluating Propositions – 149

Satisfiability of Propositions – 150

Structural Induction – 152

Mutual Recursion – 154

Exercises – 156

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_16

16

144 Chapter 16 · Expression Trees

Trees

Tree-like structures are ubiquitous in Informatics. They are used to provide
conceptualmodels of situations andprocesses involvinghierarchies, for represe-
nting the syntax of languages involving nesting, and for representing data in a
way that is amenable to processing by recursive algorithms. We have already
seen some pictures of trees in Chap. 12, in the explanation of foldr and foldl,
and the sequent calculus proofs in Chap. 14 have a tree-like structure.

Algebraic data types are ideal for representing tree-like structures. The com-
bination of algebraic data types for representing language syntax with pattern-

Early uses of functional
programming languages were in
connection with computer-assisted
theorem proving systems, where
trees are used for representing the
syntax of the logical language and
for representing proofs, among other
things. See for instance 7 https://en.
wikipedia.org/wiki/
Logic_for_Computable_Functions.

matching function definitions for writing functions that operate on syntax can
be regarded as a “killer app” of Haskell and similar functional programming
languages.

We will now look at some examples of the use of algebraic data types for
representing the syntax of simple languages. Our second example provides a
link to the chapters on logic by showing how Haskell can be used to represent
and manipulate logical expressions and to solve problems in logic.

Arithmetic Expressions

We will begin by looking at simple arithmetic expressions involving integers,
addition and multiplication. The extension with other arithmetic operations is
left as an exercise.

data Exp = Lit Int
| Add Exp Exp
| Mul Exp Exp

deriving Eq

For this type, we’ll use
“deriving Eq” in place of
“deriving (Eq,Show)” because we
will provide a definition of
show for Exp that is different from
the one that Haskell generates
automatically.

This data type definition says that there are three kinds of values of type Exp:

• the constructor Lit (short for “literal”) applied to an Int;
• the constructor Add (short for “addition”) applied to two values of type Exp;

and
• the constructor Mul (short for “multiplication”) applied to two values of

type Exp.

The last two cases involve recursion. Just as with lists, complicated values of
type Exp are built from simpler values, starting with the simplest values of all,
which involve the constructor Lit and no recursion. A difference with respect
to lists is that there are two recursive cases, rather than just one (Cons). Another
is that each of the recursive cases require two values of the type being defined,
rather than one.

Here are some example values of type Exp:

e0 = Add (Lit 1) (Mul (Lit 2) (Lit 3))
e1 = Mul (Add (Lit 1) (Lit 2)) (Lit 3)
e2 = Add e0 (Mul (Lit 4) e1)

Unfortunately, it’s a little hard to see what expressions we have just defined.
The following function for converting from Exp to String produces a more
familiar notation:

showExp :: Exp -> String
showExp (Lit n) = show n
showExp (Add e f) = par (showExp e ++ " + " ++ showExp f)
showExp (Mul e f) = par (showExp e ++ " * " ++ showExp f)

https://en.wikipedia.org/wiki/Logic_for_Computable_Functions
https://en.wikipedia.org/wiki/Logic_for_Computable_Functions
https://en.wikipedia.org/wiki/Logic_for_Computable_Functions

Arithmetic Expressions
145 16

par :: String -> String
par s = "(" ++ s ++ ")"

and then the following (to be explained in Chap. 24) incorporates this into the
built-in show function:

Alternatively, combine the function
definition with the instance
declaration:
instance Show Exp where
show (Lit n)
= show n

show (Add e f)
= par (show e ++ " + " ++ show f)

show (Mul e f)
= par (show e ++ " * " ++ show f)

instance Show Exp where
show e = showExp e

which gives:

> e0
(1 + (2 * 3))
> e1
((1 + 2) * 3)
> e2
((1 + (2 * 3)) + (4 * ((1 + 2) * 3)))

The definition of showExp uses full parenthesisation to show the structure of
expressions.

The expressions e0 and e1 involve the same literals and the same operations
in the same order, but it’s obvious from a comparison of their parenthesised
outputs that they have different structures.Drawing themas treesmakes it clear
how their nesting structures differ:

e0 = Add

Lit

1

Mul

Lit

2

Lit

3

e1 = Mul

Add

Lit

1

Lit

2

Lit

3

And drawing e2 as a tree shows how its sub-expressions e0 and e1 (drawn
in boxes) contribute to the overall structure of the expression:

e2 = Add

Add

Lit

1

Mul

Lit

2

Lit

3

Mul

Lit

4

Mul

Add

Lit

1

Lit

2

Lit

3

16

146 Chapter 16 · Expression Trees

Evaluating Arithmetic Expressions

You learned when you were a child how to compute the value of expressions
like e2. What you learned is expressed in Haskell by the following recursive
function definition:

evalExp :: Exp -> Int
evalExp (Lit n) = n
evalExp (Add e f) = evalExp e + evalExp f
evalExp (Mul e f) = evalExp e * evalExp f
Taking the three cases of evalExp in turn:

• the value of Lit n is just n :: Int;
• to get the value of Add e f , add the value of e and the value of f ; and
• to get the value of Mul e f , multiply the value of e and the value of f .

This gives the following results:

> evalExp e0
7
> evalExp e1
9
> evalExp e2
43

Let’s see how this works by performing the computation of evalExp e0 one
step at a time, expanding the underlined part of the expression at each step:

evalExp e0
Retrieving value of e0

= evalExp (Add (Lit 1) (Mul (Lit 2) (Lit 3)))
Applying 2nd equation, with e = Lit 1 and f = Mul (Lit 2) (Lit 3)

= evalExp (Lit 1) + evalExp (Mul (Lit 2) (Lit 3))
Applying 1st equation, with n = 1

= 1 + evalExp (Mul (Lit 2) (Lit 3))
Applying 3rd equation, with e = Lit 2 and f = Lit 3

= 1 + (evalExp (Lit 2) * evalExp (Lit 3))
Applying 1st equation, with n = 2

= 1 + (2 * evalExp (Lit 3))
Applying 1st equation, with n = 3

= 1 + (2 * 3)
Doing the addition and multiplication

= 7

Note the type: evalExp :: Exp -> Int. That is, evalExp takes an expression,
and produces its value, which is an integer.

Values of type Exp represent the syntax of arithmetic expressions, where
constructors like Add :: Exp -> Exp -> Exp build complicated expressions from
simpler expressions. Values of type Int represent their semantics, with oper-
ations like (+) :: Int -> Int -> Int computing the values of complicated
expressions from the values of their constituent sub-expressions.

This helps to understand the meaning of an equation like
evalExp can be viewed as a
homomorphism between the
algebraic structures (Exp, Add, Mul)
and (Int, +, *), see 7 https://en.
wikipedia.org/wiki/Homomorphism.
This is typical for functions that map
syntax to semantics.

evalExp (Add e f) = evalExp e + evalExp f
in the definition of evalExp. On the left-hand side, we have syntax: Add e f
represents an arithmetic expression, with sub-expressions e and f. On the right-
hand side, we have semantics: evalExp e + evalExp f uses addition to compute
the value of the expression from the values evalExp e and evalExp f of its
sub-expressions.

https://en.wikipedia.org/wiki/Homomorphism
https://en.wikipedia.org/wiki/Homomorphism

Propositions
147 16

Arithmetic Expressions with Infix Constructors

Using infix notation for the constructors Add and Mul, by surrounding them
with backticks, makes the same example a little easier to read:

data Exp = Lit Int
| Exp `Add` Exp
| Exp `Mul` Exp

deriving Eq

e0 = Lit 1 `Add` (Lit 2 `Mul` Lit 3)
e1 = (Lit 1 `Add` Lit 2) `Mul` Lit 3
e2 = e0 `Add` ((Lit 4) `Mul` e1)

instance Show Exp where
show (Lit n) = show n
show (e `Add` f) = par (show e ++ " + " ++ show f)
show (e `Mul` f) = par (show e ++ " * " ++ show f)

evalExp :: Exp -> Int
evalExp (Lit n) = n
evalExp (e `Add` f) = evalExp e + evalExp f
evalExp (e `Mul` f) = evalExp e * evalExp f

We can go further, and use symbolic constructors:

data Exp = Lit Int
| Exp :+: Exp
| Exp :*: Exp

deriving Eq

As we have seen, the names of constructors are required to begin with an
upper case letter. But if their names are composed of symbols rather than letters,
they are instead required to begin with a colon and are infix, as with :+: and
:*: in this example, and : for Haskell’s lists. (We could instead use :+ and :*,
but we add a closing colon for the sake of symmetry.)

Finishing the example:

Abstract syntax refers to the structure
of a syntactic expression, taking into
account the kind of expression (e.g.
literal, addition or multiplication)
and its sub-expressions. See
7 https://en.wikipedia.org/wiki/
Abstract_syntax. Concrete syntax
refers to the representation of a
syntactic expression in terms of text,
including things like the names of the
operations (e.g. + and *), whether or
not they are infix, and the use of
parentheses for grouping. Algebraic
data types capture abstract syntax,
while strings (as in the output of
show) are used for concrete syntax.
Using notation like :+: for
constructors makes the code easier to
read, but at the same time it blurs
this important distinction while also
risking confusion between syntax
(:+:,:*:) and semantics (+, *).

e0 = Lit 1 :+: (Lit 2 :*: Lit 3)
e1 = (Lit 1 :+: Lit 2) :*: Lit 3
e2 = e0 :+: ((Lit 4) :*: e1)

instance Show Exp where
show (Lit n) = show n
show (e :+: f) = par (show e ++ " + " ++ show f)
show (e :*: f) = par (show e ++ " * " ++ show f)

evalExp :: Exp -> Int
evalExp (Lit n) = n
evalExp (e :+: f) = evalExp e + evalExp f
evalExp (e :*: f) = evalExp e * evalExp f

Propositions

Our second example, which is a little more complicated, is for
logical expressions (propositions). These expressions are built from variables

The name “well-formed formula”
(WFF) is often used instead of
“proposition”.and truth values using negation, conjunction, and disjunction.

https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Abstract_syntax

16

148 Chapter 16 · Expression Trees

type Name = String
data Prop = Var Name

| F
| T
| Not Prop
| Prop :||: Prop
| Prop :&&: Prop

deriving Eq

This algebraic data type definition says that we have the following kinds of
values of type Prop:

• the constructorVar (variable) applied to aName,which is aStringaccording
to the type definition;

• the constructors F (false) and T (true);We use F and T to avoid conflict with
False and True. • the constructor Not (negation) applied to a value of type Prop;

• the infix constructor :||: (disjunction) applied to two values of type Prop;
and

• the infix constructor :&&: (conjunction) applied to two values of type Prop.

Here are some examples of propositions:

p0 = Var "a" :&&: Not (Var "a")
p1 = (Var "a" :&&: Var "b")

:||: (Not (Var "a") :&&: Not (Var "b"))
p2 = (Var "a" :&&: Not (Var "b")

:&&: (Var "c" :||: (Var "d" :&&: Var "b"))
:||: (Not (Var "b") :&&: Not (Var "a")))

:&&: Var "c"

p2 was used as an example for
building truth tables on page 29.

As with Exp, the definition of show that Haskell generates automatically for
Prop makes propositions hard to read, so we provide a different definition:

instance Show Prop where
show (Var x) = x
show F = "F"
show T = "T"
show (Not p) = par ("not " ++ show p)
show (p :||: q) = par (show p ++ " || " ++ show q)
show (p :&&: q) = par (show p ++ " && " ++ show q)

which gives

> p0
(a && (not a))
> p1
((a && b) || ((not a) && (not b)))
> p2
((((a && (not b)) && (c || (d && b))) || ((not b) && (not a))) && c)

As with arithmetic expressions, the structure of propositions is best under-
stood when they are drawn as trees:

Evaluating Propositions
149 16

p0 = :&&:

Var

"a"

Not

Var

"a"

p1 = :||:

:&&:

Var

"a"

Var

"b"

:&&:

Not

Var

"a"

Not

Var

"b"
p2 = :&&:

:||:

:&&:

:&&:

Var

"a"

Not

Var

"b"

:||:

Var

"c"

:&&:

Var

"d"

Var

"b"

:&&:

Not

Var

"b"

Not

Var

"a"

Var

"c"

Evaluating Propositions

Evaluating aproposition shouldproduce aBooleanvalue, eitherTrueorFalse.
But the value of a proposition that contains variables will depend on the values
of those variables. Itmakes no sense to ask for the valueof apropositionwithout
providing this information.

What we need is a valuation that associates the variables in a proposition
with their values. We’ll use a function from names to Bool:

type Valn = Name -> Bool

Now, if vn :: Valn such that vn "a" = True+, the value of the proposition
Var "a" in vn will be True.

The definition of evaluation of propositions follows similar lines to evalu-
ation of arithmetic expressions, with more cases (because there are more con-
structors for the type Prop) and with a valuation as an additional parameter to
handle variables:

evalProp :: Valn -> Prop -> Bool
evalProp vn (Var x) = vn x
evalProp vn F = False
evalProp vn T = True
evalProp vn (Not p) = not (evalProp vn p)
evalProp vn (p :||: q) = evalProp vn p || evalProp vn q
evalProp vn (p :&&: q) = evalProp vn p && evalProp vn q

To check that this works, let’s define a valuation that gives values to the
variables named "a", "b", "c", and "d", which are all the variables that appear
in our example propositions p0, p1, and p2:

16

150 Chapter 16 · Expression Trees

valn :: Valn
valn "a" = True
valn "b" = True
valn "c" = False
valn "d" = True

This gives

> evalProp valn p0
False
> evalProp valn p1
True
> evalProp valn p2
False

If you are having difficulty understanding the definition of evalProp, try
studying the following computation of the value of evalProp valn p0:

evalProp valn p0
Retrieving value of p0

= evalProp valn (Var "a" :&&: Not (Var "a"))
Applying 6th equation, with vn = valn, p = Var "a"

and q = Not (Var "a")
= evalProp valn (Var "a") && evalProp valn (Not (Var "a"))

Applying 1st equation, with vn = valn and x = "a"
= valn "a" && evalProp valn (Not (Var "a"))

Applying definition of valn
= True && evalProp valn (Not (Var "a"))

Applying 4th equation, with vn = valn and p = Var "a"
= True && not (evalProp valn (Var "a"))

Applying 1st equation, with vn = valn and x = "a"
= True && not (valn "a")

Applying definition of valn
= True && not True

Doing the negation and conjunction
= False

Once again, notice how the structure of the definitions of evalProp and
show for Prop follow the structure of the definition of Prop:
• there is one equation for each constructor;
• the equations for Var, F and T don’t involve recursion;
• the equations for Not, :||: and :&&: are recursive, in just the same way

that the definition of Prop is recursive in these cases.

The correspondence is so close that you can read off the “shape” of the defini-
tions of evalProp and show directly from the form of the definition of Prop.
You’ve seen this before for recursive definitions over lists.

Satisfiability of Propositions

Recall that a proposition is satisfiable if there is at least one combination of
values of variables—a valuation—for which the proposition is true. Now that
we have propositions available as values of type Prop, and a function evalProp
for evaluating them, we are almost in a position to write a function to check
satisfiability. The main thing missing is a list of all of the possible valuations

Satisfiability of Propositions
151 16

for the variables in the proposition that we want to test for satisfiability, for
use as parameters of evalProp.

The first step is to compute the names of all of the variables in a proposition:

type Names = [Name]

names :: Prop -> Names
names (Var x) = [x]
names F = []
names T = []
names (Not p) = names p
names (p :||: q) = nub (names p ++ names q)
names (p :&&: q) = nub (names p ++ names q)

This uses the function nub from the Data.List library module which
removes duplicates from a list. This is necessary because p and q may have
variables in common in the last two cases of the definition. We get the expected
results:

> names p0
["a"]
> names p1
["a","b"]
> names p2
["a","b","c","d"]

Now we need to compute the list of all possible valuations that give values
to the variables in a given list.

empty :: Valn
empty y = error "undefined"

extend :: Valn -> Name -> Bool -> Valn
extend vn x b y | x == y = b

| otherwise = vn y

valns :: Names -> [Valn]
valns [] = [empty]
valns (x:xs)

= [extend vn x b | vn <- valns xs, b <- [True, False]]

Here, empty is the empty valuation, which produces an error for every variable
name; extend vn x b yields the valuation which gives the value b to the variable
x without changing the values of other variables in vn.

This definitionofvalns is a little tricky.Let’s start by lookingat the recursive
case. It combines all of the possible choices for the value of x—False and
True—with all of the choices in valns xs for the values of the other variables.

In the base case, valns [] is defined to deliver a list containing just the empty
valuation. You may think that including the empty valuation is pointless and
so be tempted to replace this line of the definition with

valns [] = []

but the effect of that would be to make valns xs produce the empty list of Make sure that you understand why!
valuations for any xs :: Names.

Let’s look at what valns produces, to check that it works. Haskell is unable
to display functions, so we’ll work it out by hand. Using the informal notation

{x0 �→ v0, . . . , xn �→ vn}
for the function that maps xj to vj for 0 ≤ j ≤ n, we have:

16

152 Chapter 16 · Expression Trees

valns [] = [{anything �→ error}]
valns ["b"] = [{"b" �→ False, anything else �→ error},

{"b" �→ True, anything else �→ error}]
valns ["a","b"]= [{"a" �→ False, "b" �→ False, anything else �→ error},

{"a" �→ False, "b" �→ True, anything else �→ error},
{"a" �→ True, "b" �→ False, anything else �→ error},
{"a" �→ True, "b" �→ True, anything else �→ error}]

As expected, there are 2n possible valuations over n variables.
Now a function to test satisfiability is easy towrite, using list comprehension

and the Prelude function or :: [Bool] -> Bool:

satisfiable :: Prop -> Bool
satisfiable p = or [evalProp vn p | vn <- valns (names p)]

Let’s see what happens for our examples:

> [evalProp vn p0 | vn <- valns (names p0)]
[False,False]
> satisfiable p0
False
> [evalProp vn p1 | vn <- valns (names p1)]
[True,False,False,True]
> satisfiable p1
True
> [evalProp vn p2 | vn <- valns (names p2)]
[False,False,True,True,False,False,False,False, ... etc.]
> satisfiable p2
True

Structural Induction

Recall structural induction on lists from Chap. 11:

Proof Method (Structural Induction on lists). To prove that a property P holds
for all finite lists of type [t]:

Base case: Show that P holds for []; and

Induction step: Show that if P holds for a given list xs of type [t] (the
induction hypothesis), then it also holds for x : xs for any value x of type t.

This was justified by the definition of lists:

Definition. A list of type [t] is either

1. empty, written [], or
2. constructed, written x : xs, with head x (an element of type t) and tail xs (a
list of type [t]).

which exactly captures the algebraic data type definition of List, but using
Haskell notation in place of the constructors Nil and Cons:

deriving (Eq,Show)deriving
(Eq,Show) is omitted because it isn’t
relevant to the present topic.

data List a = Nil
| Cons a (List a)

The same justification yields a structural induction principal for other alge-
braic data types. For example, for the type Exp of arithmetic expressions:

Structural Induction
153 16

data Exp = Lit Int
| Exp `Add` Exp
| Exp `Mul` Exp

we get:

Proof Method (Structural Induction on Exp). To prove that a property P holds
for all finite values of type Exp:

Base case: Show that P holds for Lit n, for any n :: Int;

Induction step for Add: Show that if P holds for given e :: Exp and f :: Exp
(the induction hypotheses), then it also holds for e `Add` f ; and

Induction step for Mul: Show that if P holds for given e :: Exp and f :: Exp
(the induction hypotheses), then it also holds for e `Mul` f .

Let’s use this to prove that replacing all sub-expressions of the form
e `Add` Lit 0 by e and Lit 0 `Add` f by f doesn’t affect the values of expres-
sions. We’ll prove that

evalExp (simplify e) = evalExp e

by structural induction on e, where simplify is defined as follows: Notice that simplify will simplify
Lit n `Add` (Lit 0 `Add` Lit 0) to
Lit n, because Lit 0 `Add` Lit 0
simplifies to Lit 0 and then
Lit n `Add` Lit 0 simplifies to Lit n.

simplify :: Exp -> Exp
simplify (Lit n) = Lit n
simplify (e `Add` f)

| e' == Lit 0 = f'
| f' == Lit 0 = e'
| otherwise = e' `Add` f'
where e' = simplify e

f' = simplify f
simplify (e `Mul` f) = (simplify e) `Mul` (simplify f)

Base case: simplify (Lit n) = Lit n so evalExp (simplify (Lit n)) =
evalExp (Lit n)

Induction step for Add: Suppose that

evalExp (simplify e) = evalExp e
evalExp (simplify f) = evalExp f

for given e, f :: Exp. Then we need to show that

evalExp (simplify (e ‘Add‘ f)) = evalExp (e ‘Add‘ f)

Case 1, simplify e == Lit 0:
evalExp (simplify (e `Add` f))

= evalExp (simplify f)
= evalExp f (applying the second IH)

evalExp (e `Add` f)
= evalExp e + evalExp f
= evalExp (simplify e) + evalExp f (applying the first IH)
= evalExp (Lit 0) + evalExp f
= 0 + evalExp f
= evalExp f

Case 2, simplify f == Lit 0: Similarly.

16

154 Chapter 16 · Expression Trees

Case 3, the otherwise case in simplify:
evalExp (simplify (e `Add` f))

= evalExp ((simplify e) `Add` (simplify f))
= evalExp (simplify e) + evalExp (simplify f)
= evalExp e + evalExp f (applying the IHs)
= evalExp (e `Add` f)

Induction step for Mul: Suppose that

evalExp (simplify e) = evalExp e
evalExp (simplify f) = evalExp f

for given e, f :: Exp. Then we need to show that

evalExp (simplify (e `Mul` f)) = evalExp (e `Mul` f)

evalExp (simplify (e `Mul` f))
= evalExp ((simplify e) `Mul` (simplify f))
= evalExp (simplify e) * evalExp (simplify f)
= evalExp e * evalExp f (applying the IHs)
= evalExp (e `Mul` f)

There is a direct correspondence between the definition of an algebraic data
type and its structural induction principal:

1. there is a base case corresponding to each non-recursive case of the data
type definition;

2. there is a separate induction step corresponding to each of the recursive
cases of the definition; and

3. in each of those induction steps, there is an induction hypothesis corre-
sponding to each of the recursive occurrences of the type being defined.

Every algebraic data type definition gives rise to a structural induction principalWell, almost every, there’s a
problem with any algebraic data type
T having a constructor that requires
a value of type T -> t, for some t.
But such types are rare.

that can be read off from the definition by applying (1)−(3). For Exp, there is
one base case (for Lit) by (1); there are two induction steps (for Add and Mul)
by (2); and each induction step has two induction hypotheses by (3). For List,
there is one base case (for [], aka Nil); there is one induction step (for :, aka
Cons); and that induction step has one induction hypothesis.

Mutual Recursion

You have seen how algebraic data types are useful for representing the syntax
of simple languages of arithmetic expressions and propositions. Slightly moreMutual recursion arises naturally

in human language. For example,
“the hair on her head” is a noun
phrase, which includes the
prepositional phrase “on her head”,
which in turn includes the noun
phrase “her head”.

complicated examples of languages often involve mutual recursion, where the
definition of one data type A refers to another data type B, whose definition
refers back to A. The cycle of references may involve more than two types. To
cope with this situation, Haskell allows mutually recursive algebraic data type

Remember that the order of
definitions doesn’t matter in Haskell,
so the forward reference to Cond in
the definition of Exp isn’t a problem.

definitions, as well as the mutually recursive function definitions that naturally
arise in functions over such types.

Let’s extend our language of arithmetic expressions by adding conditional
expressions, where conditions compare the values of expressions:

data Exp = Lit Int
| Add Exp Exp
| Mul Exp Exp
| If Cond Exp Exp

deriving Eq

Mutual Recursion
155 16

data Cond = Eq Exp Exp
| Lt Exp Exp
| Gt Exp Exp

deriving Eq

The types Exp and Cond are mutually recursive: the last case (If) of Exp refers
to Cond, and all three cases of Cond refer to Exp.

Here are some example values of the types Exp and Cond:

e0 = Add (Lit 1) (Mul (Lit 2) (Lit 3))
e1 = Mul (Add (Lit 1) (Lit 2)) (Lit 3)
c0 = Lt e0 e1
e2 = If c0 e0 e1

Tree diagrams for e0 and e1 are on page 145. Here is e2 (which includes c0) as
a tree:

If

Lt

Add

Lit

1

Mul

Lit

2

Lit

3

Mul

Add

Lit

1

Lit

2

Lit

3

Add

Lit

1

Mul

Lit

2

Lit

3

Mul

Add

Lit

1

Lit

2

Lit

3

The definitions of the function show for Exp and show for Cond are mutually
recursive: the last case of show for Exp calls show for Cond, and all of the cases
of show for Cond call show for Exp. That’s exactly the same pattern of recursion
as in the definitions of the types Exp and Cond.

instance Show Exp where
show (Lit n) = show n
show (Add e f) = par (show e ++ " + " ++ show f)
show (Mul e f) = par (show e ++ " * " ++ show f)
show (If c e f) = "if " ++ show c

++ " then " ++ show e
++ " else " ++ show f

instance Show Cond where
show (Eq e f) = show e ++ " == " ++ show f
show (Lt e f) = show e ++ " < " ++ show f
show (Gt e f) = show e ++ " > " ++ show f

This gives:

> c0
(1 + (2 * 3)) < ((1 + 2) * 3)
> e2
if (1 + (2 * 3)) < ((1 + 2) * 3) then (1 + (2 * 3)) else ((1 + 2) * 3)

The definition of evaluation is also mutually recursive:

evalExp :: Exp -> Int
evalExp (Lit n) = n
evalExp (Add e f) = evalExp e + evalExp f

16

156 Chapter 16 · Expression Trees

evalExp (Mul e f) = evalExp e * evalExp f
evalExp (If c e f) = if evalCond c then evalExp e

else evalExp f

evalCond:: Cond -> Bool
evalCond (Eq e f) = evalExp e == evalExp f
evalCond (Lt e f) = evalExp e < evalExp f
evalCond (Gt e f) = evalExp e > evalExp f

This gives:

> evalExp e0
7
> evalExp e1
9
> evalCond c0
True
> evalExp e2
7

The grammars of languages used in
Informatics are usually expressed in
Backus-Naur Form (BNF), see
7 https://en.wikipedia.org/wiki/
Backus-Naur_form. Here is a
BNF definition for our example of
arithmetic expressions extended with
conditional expressions:

〈exp〉 ::= 〈int〉
| 〈exp〉 + 〈exp〉
| 〈exp〉 * 〈exp〉
| if 〈cond〉 then 〈exp〉 else 〈exp〉

〈cond〉 ::= 〈exp〉 == 〈exp〉
| 〈exp〉 < 〈exp〉
| 〈exp〉 > 〈exp〉

The notation for defining algebraic
data types is deliberately similar to
BNF.

Exercises

1. Add subtraction and integer division to the data type Exp and the functions
showExp and evalExp. (Use the original version of Exp on page 144 rather
than the extended version.)
Add variables and re-define evalExp to make it compute the value of an
expression with respect to an environment that associates its variables with
their values.

2. Define a function

ttProp :: Valn -> Prop -> [(Prop,Bool)]

that computes the entries in one row of the truth table for a proposition.
For example, ttProp valn p0 should produce

[(a,True), ((not a),False), ((a && (not a)),False)]

representing

a ¬a a ∧ ¬a
1 0 0

and ttProp valn p1 should produce

[(a,True), (b,True), ((not a),False), ((not b),False),
((a && b),True), (((not a) && (not b)),False),
(((a && b) || ((not a) && (not b))),True)]

representing

a b ¬a ¬b a ∧ b ¬a ∧ ¬b (a ∧ b) ∨ (¬a ∧ ¬b)
1 1 0 0 1 0 1

Hint: Start with a function that produces a list of all the sub-expressions of
a proposition. Then use the function sortOn from the Data.List library
module together with a function for computing the size of a proposition to
arrange the entries in order, starting with the simplest and ending with the
entry for the proposition itself. Use the function nub from Data.List to
remove duplicate entries. Then use evalProp to compute the values of all
of the entries in the list.

https://en.wikipedia.org/wiki/Backus-Naur_form
https://en.wikipedia.org/wiki/Backus-Naur_form

Exercises
157 16

3. Define a function to check whether a proposition is a tautology. Check that
Not p0 is a tautology and that p1 is not a tautology.
Define another function to check whether two propositions are equivalent.
Check that p2 is equivalent to Not (Var "b") :&&: Var "c", as our con-
version of p2 to CNF on page 167 says it should be, and that p2 is not
equivalent to p1.

4. A sequent is satisfiable if there is at least one valuation for which all of
its antecedents are true and at least one of its succedents is true. Define
a type Sequent for representing sequents � � � where �,� :: [Prop].
Write a function satSequent :: Sequent -> Bool that checks if a sequent
is satisfiable or not.
(This is related to but different from Exercise 14.1, where the required func-
tion checks validity of sequents formed from predicates over the simple
universe of shapes in Chap. 6, rather than satisfiability of sequents formed
from propositions in Prop.)

5. A proposition is in negation normal form if the only use of negation is in
applications directly to variables.
Write a function isNNF :: Prop -> Bool to test whether a proposition is in
negation normal form.
Write a function toNNF :: Prop -> Prop that converts a proposition to
negation normal form by applying the following equivalences:

¬(p ∧ q) = ¬p ∨ ¬q
¬(p ∨ q) = ¬p ∧ ¬q

¬¬p = p

Test that toNNF p produces a result that is in negation normal form and that
is equivalent to p. To do the tests, you’ll need to include the following code
to generate random propositions:

import Control.Monad
instance Arbitrary Prop where

arbitrary = sized prop
where

prop n | n<=0 = oneof [liftM Var arbitrary,
return T,
return F]

| otherwise
= oneof [liftM Not subprop,

liftM2 (:||:) subprop subprop,
liftM2 (:&&:) subprop subprop]

where subprop = prop (n `div` 2)

6. Mobiles are hanging sculptures made of rods, wires and pendants. At each
end of every rod in a mobile is a wire from which is hung a pendant or
another rod. Rods and wires are weightless; pendants have weight. Here
are some examples of mobiles:

https://doi.org/10.1007/978-3-030-76908-6_14
https://doi.org/10.1007/978-3-030-76908-6_14

16

158 Chapter 16 · Expression Trees

40
10

10

20

15 10

20

25

Mobile A

Mobile C

20

Mobile B

20 10

10
40

Theweight of a mobile is the sum of the weights of the pendants attached
to it. A mobile is balanced if the mobiles attached at the ends of each rod
are of the same weight, and these mobiles are themselves balanced. In the
pictures above, mobile A is not balanced but mobiles B and C are balanced.

(a) Define an algebraic data type for representing mobiles, and functions
for computing the weight of a mobile and testing whether a mobile is
balanced.

(b) When the wind blows, the rods and pendants of amobile move in space.
We can reflect a mobile, or any sub-mobile of a larger mobile, about its
vertical axis: for a pendant, the reflection is just itself; for a rod, we swap
the positions of the two mobiles hanging off its ends. Mobilem is equal
to mobilem′ ifm can be transformed to yieldm′ by applying reflections
to some or all of the rods in m. In the pictures above, mobiles B and C
are equal. Define a function for testing equality of mobiles.

(c) Define a function bmobile :: [Int] -> Maybe Mobile that produces a
balanced mobile, if there is one, from a list of pendant weights.
Hint: Start by writing a function

eqsplits :: [Int] -> [([Int],[Int])]

such that eqsplits ns produces a list of all partitions of ns into two
lists of equal weight. So

eqsplits [1,2,3] = [([3], [1, 2]), ([1, 2], [3])]
eqsplits [1,2] = []

Then write bmobile, using eqsplits to produce candidate partitions
for argument lists of length > 1.

7. Give structural induction principals for Prop, for Bool, and for Mobile
from Exercise 6.

Exercises
159 16

8. Define mutually recursive algebraic data types for noun phrases, preposi-
tional phrases, and any other syntactic categories required to capture the
following examples and others like them:

the big dog
the silly man with the tiny dog
a dog with the silly man on the hill
the cat in the hat
the cat with the man in the hat on the hill

Comment on any ambiguities that arise, using tree diagrams to illustrate.

161 17

KarnaughMaps

Contents

Simplifying Logical Expressions – 162

Conjunctive Normal form and Disjunctive
Normal form – 162

KarnaughMaps – 163

Converting Logical Expressions to DNF – 165

Converting Logical Expressions to CNF – 167

Exercises – 168

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_17

17

162 Chapter 17 · Karnaugh Maps

Simplifying Logical Expressions

Complex logical expressions like (a∧¬b∧(c∨(d∧b))∨(¬b∧¬a))∧c are hard
to understand and hard to work with. The much simpler expression ¬b ∧ c, to
which it is equivalent, is obviously an improvement. When logical expressions
are used to design hardware circuits, simpler expressions produce circuits that
are cheaper because they have fewer components. The left-hand diagram is a
circuit for the complex expression, and the right-hand diagram is a circuit for

The symbols used in these circuit
diagrams are explained on page 223.

the simpler equivalent expression.

One way of simplifying a logical expression, that we will look at later, is to
apply equivalences like the double negation law and De Morgan’s laws:

¬¬a = a ¬(a ∨ b) = ¬a ∧ ¬b ¬(a ∧ b) = ¬a ∨ ¬b

in an attempt to reduce the depth of nesting, eliminate redundant terms, etc.
In this chapter we will look at a different method, called Karnaugh maps,

Karnaugh is pronounced “karnaw”.
Karnaugh maps are due to the
American physicist, mathematician
and inventor Maurice Karnaugh
(1924−), see 7 https://en.wikipedia.
org/wiki/Maurice_Karnaugh.
Karnaugh maps can be used for
expressions with more than four
predicates but they are harder to
draw and to understand.

that is useful for simplifying logical expressions that involve no more than four
predicates. A Karnaugh map is a particular representation of the truth table
for an expression fromwhich a simplified form of the expression can be directly
read off.

Conjunctive Normal form and Disjunctive Normal form

To explain conjunctive normal form, we first need to introduce some
terminology.

• A literal is a predicate like p or a negated predicate like ¬p.
• A clause is a disjunction of literals, for instance p ∨ ¬q ∨ r

A logical expressions is in conjunctive normal form (CNF) if it consists of aIn Mathematics, a normal form is a
standard way of presenting an
expression. Usually, there is an
algorithm for converting any
expression into normal form. If the
normal form of an expression is
unique, meaning that equivalent
expressions have the same normal
form, then it is called a canonical
form. Conversion of two expressions
into canonical form is a way of
checking whether or not they are
equivalent.

conjunction of clauses. Some examples of expressions in conjunctive normal
form are

• (a ∨ ¬b) ∧ c ∧ (¬a ∨ d) ∧ (a ∨ b ∨ ¬c) (four clauses)
• p ∨ ¬q ∨ r (one clause)

Every logical expression can be converted into an equivalent expression in con-
junctive normal form. The fact that negation only appears at the level of literals
and that nesting is strictly limitedmakes expressions in conjunctive normal form
easy to understand.

https://en.wikipedia.org/wiki/Maurice_Karnaugh
https://en.wikipedia.org/wiki/Maurice_Karnaugh

Karnaugh Maps
163 17

Disjunctive normal form is similar, butwith the roles of conjunction and dis-
junction reversed.While an expression in conjunctive normal form is a conjunc-
tion of disjunctions of literals, an expression in disjunctive normal form (DNF)
is a disjunction of conjunctions of literals. An example of an expression in dis- In DNF, the word “clause” is

sometimes used for a conjunction of
literals, with a DNF expression being
a disjunction of clauses. But we will
reserve that word for a disjunction of
literals as in CNF.

junctive normal form is (a∧¬b∧ c)∨ (¬a∧ d)∨ (a∧¬c). Again, every logical
expression can be converted into an equivalent expression in disjunctive normal
form.

Expressions in CNF and DNF are easy to understand and expressions in
one of these forms are required for some purposes, as wewill see later.However,
converting an expression toCNForDNFwill sometimes produce an expression
that is exponentially larger than the original expression.

Karnaugh Maps

Consider the expression

(a∧¬b∧(c∨(d∧b))∨(¬b∧¬a))∧c

Here is its truth table:

a b c d c ∨ (d ∧ b) a ∧ ¬b ∧ (c ∨ (d ∧ b)) ¬b ∧ ¬a (a ∧ ¬b ∧ (c ∨ (d ∧ b)) ∨ (¬b ∧ ¬a)) ∧ c
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1
0 0 1 1 1 0 1 1
0 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 0
0 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 1
1 0 1 1 1 1 0 1
1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 1 1 0 0 0

A Karnaugh map is simply a 4 × 4 representation of the 16 entries in the
last column of the truth table:

cd

ab

00 01 11 10

00

01

11

10

1 1

1 1

0 0

0 0 00

0 0

0 0 00

17

164 Chapter 17 · Karnaugh Maps

The values of a and b are given along the left edge of the table, and the
values of c and d are given along the top edge. The order of those values are in
the sequence 00, 01, 11, 10, which is different from the order in the truth table.
The special feature of the Karnaugh map order is that just one digit changesAn ordering of the binary numbers

with this property is called a Gray
code. They are used for error
correction in digital communication,
see 7 https://en.wikipedia.org/wiki/
Gray_code.

between consecutive items. With truth table order, the sequence would be 00,
01, 10, 11, where both digits change when moving from 01 to 10.

Now, let’s consider how to characterise the values of a, b, c, and d for which
the entry in the Karnaugh map is 1. We start by collecting adjacent 1s into
rectangular groups, in such a way that all of the 1s are included in some group.
There are two groups:

cd

ab

00 01 11 10

00

01

11

10

1 1

1 1

0 0

0 0 00

0 0

0 0 00

Looking at the labels for a and b along the left edge of the table and the
labels for c and d along the top edge, the first of these groups corresponds to a
value of 0 for a and b and a value of 1 for c, while the value of d doesn’t matter
because there is a 1when d is 0 as well as when d is 1. This combination of values
is described by the expression ¬a ∧ ¬b ∧ c. The second group corresponds to
a = 1, b = 0, and c = 1, which is described by a ∧ ¬b ∧ c. All of the other
entries are 0, so the expression (¬a∧ ¬b∧ c)∨ (a∧ ¬b∧ c) describes all of the
entries that are 1. It follows that

You may notice that
(¬a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ c) can be
further simplified to give ¬b ∧ c.
This example will be revisited later in
order to show how that expression
can be obtained directly from the
Karnaugh map.

(¬a∧¬b∧ c)∨ (a∧¬b∧ c)

is equivalent to (a∧ ¬b∧ (c∨ (d ∧ b))∨ (¬b∧ ¬a))∧ c, the expression that we
started with.

Let’s look at a different example. Here’s the Karnaugh map for the expres-
sion ((a ∧ ¬b) ∨ c ∨ (¬d ∧ b) ∨ a) ∧ ¬c.

cd

ab

00 01 11 10

00

01

11

10

1

1 1

1 1

0 0 00

0 00

00

00

There are different ways of making groups of 1s, including the following:

https://en.wikipedia.org/wiki/Gray_code
https://en.wikipedia.org/wiki/Gray_code

Converting Logical Expressions to DNF
165 17

cd

ab

00 01 11 10

00

01

11

10

1

1 1

1 1

0 0 00

0 00

00

00

cd

ab

00 01 11 10

00

01

11

10

1

1 1

1 1

0 0 00

0 00

00

00

cd

ab

00 01 11 10

00

01

11

10

1

1 1

1 1

0 0 00

0 00

00

00

cd

ab

00 01 11 10

00

01

11

10

1

1 1

1 1

0 0 00

0 00

00

00

Any grouping is valid, but some groupings yield results that are more
compact. The best result is obtained by taking large blocks, since they can A block of size 2n can be described

by a conjunction of 4 − n literals.be described by smaller expressions covering a large number of 1s. Overlap-
ping blocks are okay, and large blocks that overlap produce better results than
smaller blocks that are disjoint. We will see below why we will want to require
that the number of entries in each group should be a power of 2, i.e. 1, 2, 4,
8, or 16. That eliminates the first and third of these groupings, since they each
contain a group of size 3.

The second grouping yields the expressions a ∧ ¬c (for the big group) and
¬a ∧ b∧ ¬c ∧ ¬d (for the small group), giving a result of (a ∧ ¬c)∨ (¬a ∧ b∧
¬c ∧ ¬d). The fourth grouping yields the expressions a ∧ ¬c and b∧ ¬c ∧ ¬d ,
giving a result of (a ∧ ¬c) ∨ (b ∧ ¬c ∧ ¬d).

Converting Logical Expressions to DNF

The procedure that we have been following in the last two examples will always
produce an expression in DNF. Provided the number of entries in a group of
cells is a power of 2, it can be described by a conjunction of literals. Combining
these expressions using disjunction—a cell contains 1 if it is in the first group,
or the second group, etc.—gives an expression in DNF.

Let’s look at what happens when the size of a group is not a power of 2,
by looking at the group of size 3 in the first and third groupings for the last
example. That group is described by the expression (a∨b)∧¬c∧¬d , and there
is no conjunction of literals that describes it. (Try it!) The same happens for all
groups having a size that isn’t a power of 2.

Let’s look again at the order of the values along the left edge and top edge
of a Karnaugh map: 00, 01, 11, 10. The fact that just one digit changes between
consecutive items is whatmakes it possible to describe a group of adjacent items
with a conjunction of literals, provided—as we have just seen—that the size of
the group is a power of 2. This relationship also holds between the first item in
the sequence, 00, and the last item, 10. That allows groups to “wrap around”
from one edge of the Karnaugh map to the other. Revisiting our first example,
we can group the 1s into a single group as follows:

17

166 Chapter 17 · Karnaugh Maps

cd

ab

00 01 11 10

00

01

11

10

1 1

1 1

0 0

0 0 00

0 0

0 0 00

This group is described by the expression ¬b ∧ c, the promised simplified
version of the earlier result.

In this example the “wrapping around” was in the vertical dimension of the
Karnaughmap.The following example shows that horizontalwrapping around
is also allowed, and even a combination of the two:

cd

ab

00 01 11 10

00

01

11

10

1 1

1 1

1 1

0 0

0 0

0 0

0 0 00

This yields the DNF expression (¬b∧¬d)∨ (¬a∧b∧¬d), where the groupOther notations are sometimes
used for these expressions, for
example, when using logic for circuit
design. There, ¬a is written a′ or ā,
a ∨ b is written a + b, and a ∧ b is
written ab. So
(¬b ∧ ¬d) ∨ (¬a ∧ b ∧ ¬d) becomes
b′d ′ + a′bd ′, with the terminology
“sum of products” (SoP) for DNF
and “product of sums” (PoS) for
CNF.

that includes all four corners corresponds to (¬b ∧ ¬d).
Vertical wrapping around corresponds geometrically to the Karnaugh map

being on the surface of a cylinder, with the top edge joined to the bottom edge.
Vertical and horizontal wrapping corresponds to it being on the surface of a
torus (doughnut):

where the corner grouping is the four cells containing a blob.

Converting Logical Expressions to CNF
167 17

Converting Logical Expressions to CNF

A similar procedure using Karnaugh maps will convert logical expressions to
conjunctive normal form (CNF).

We start by writing expressions that describe block of 0s rather than blocks
of 1s. Returning to our first example, for the expression (a ∧ ¬b ∧ (c ∨ (d ∧
b)) ∨ (¬b ∧ ¬a)) ∧ c, we can group the 0s as follows:

cd

ab

00 01 11 10

00

01

11

10

1 1

1 1

0 0

0 0 00

0 0

0 0 00

We then want to say that the 1s are in all of the places that are not in one of
these blocks.

The horizontal block is described by the expression b, so the places outside
that block are described by its negation, ¬b. The vertical block is described by
¬c so the places outside it are described by c. The places that are outside both
blocks are described by the conjunction of these two expressions, ¬b ∧ c.

Looking at our other example, we can group the 0s like this:

cd

ab

00 01 11 10

00

01

11

10

1

1 1

1 1

0 0 00

0 00

00

00

The three groups of 0s are described by the expressions ¬a ∧ ¬b, ¬a ∧ d ,
and c. Negating these gives ¬(¬a ∧ ¬b), ¬(¬a ∧ d), and ¬c. So far so good,
but the conjunction of these is ¬(¬a ∧ ¬b) ∧ ¬(¬a ∧ d) ∧ ¬c, which is not in
CNF.

To give a result in CNF, we need to apply one of the DeMorgan laws to the
negated block descriptions to turn the negated conjunctions into disjunctions:

¬(¬a ∧ ¬b) = a ∨ b
¬(¬a ∧ d) = a ∨ ¬d

17

168 Chapter 17 · Karnaugh Maps

(The third block description can be used as it is.) The conjunction of the results
is then (a ∨ b) ∧ (a ∨ ¬d) ∧ ¬c.

Exercises

1. Produce a truth table for the expression ((a ∧ ¬b)∨ c ∨ (¬d ∧ b)∨ a)∧ ¬c
(this part was Exercise 4.4(c)) and check that it yields the Karnaugh map
given for this expression above.

2. Use a Karnaugh map to convert the expression (c∨¬d)∧ (b∨¬d)∧ (¬a∨
¬b ∨ c) into an equivalent expression in DNF.

3. Use a Karnaugh map to convert the expression (¬a ∧ ¬b) ∨ (¬a ∧ ¬c) ∨
(¬a ∧ ¬d) ∨ (¬b ∧ d) ∨ (¬b ∧ c) into an equivalent expression in CNF.

4. Recall the universe of discourse from Chap. 6:

Using the predicates a = isWhite, b = isBlack, c = isSmall and d =
isDisc, produce a Karnaugh map that shows which combinations of these
predicates and their negations are inhabited by something in the universe.
Use it to produce DNF and CNF descriptions of this universe.

5. Using an example, explain why Karnaugh maps use the order 00, 01, 11, 10
for the values of a, b and c, d rather than truth table order.

6. A logical expression is in full disjunctive normal form if it is in disjunctive
normal form and each clause contains all of the predicates in the expression.
Let’s require that no clause contains “complementary literals” (the same
predicate both with and without negation); such a clause will always be
false and so can be eliminated from the disjunction.
Suppose that each clause of an expression in disjunctive normal form is rep-
resented as a set of literals, and then the expression itself is represented as a
set of these clauses. Explain why that is a canonical form for logical expres-
sions, in the sense that two logical expressions are equivalent whenever they
have the same full disjunctive normal form.

7. Recall that a proof in sequent calculus reduces a sequent to an equivalent set
of simple sequents. A simple sequent is equivalent to a disjunction of literals:
for instance, a � b is equivalent to � ¬a, b by ¬R, which is equivalent to
� ¬a∨ b by ∨R. It follows that a proof in sequent calculus of � exp yields a
CNF expression—namely, the conjunction of the disjunctions correspond-
ing to the simple sequents obtained from the proof—that is equivalent to
exp.
Use this procedure to convert (a ∧ ¬b ∧ (c ∨ (d ∧ b)) ∨ (¬b ∧ ¬a)) ∧ c to
CNF, and compare the result with what was obtained on page 167 using
Karnaugh maps.

169 18

Relations and Quantifiers

Contents

Expressing Logical Statements – 170

Quantifiers – 170

Relations – 172

Another Universe – 173

Dependencies – 174

Exercises – 175

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_18

18

170 Chapter 18 · Relations and Quantifiers

Expressing Logical Statements

Our simple universe of discourse in Chap. 6 contained a number of things

data Thing = R | S | T | U | V | W | X | Y | Z deriving Show
things :: [Thing]
things = [R, S, T, U, V, W, X, Y, Z]

with predicates for describing features of things
U

Y

Z

R

S

W

T

X

V

type Predicate u = u -> Bool

including isSmall :: Predicate Thing, isTriangle :: Predicate Thing,
etc.

We used these to express logical statements about the universe, for example
“Every white triangle is small”:

> and [isSmall x | x <- things, isWhite x && isTriangle x]
True

and “Some big triangle is grey”:

> or [isGrey x | x <- things, isBig x && isTriangle x]
True

Later, we “lifted” operations on Booleans to operations on predicates. For
instance, using (&&) :: Bool -> Bool -> Bool, we defined conjunction of
predicates:

Don’t confuse &:&, which is for
combining predicates, with :&&:,
which is a constructor for Prop
(Chap. 16).

(&:&) :: Predicate u -> Predicate u -> Predicate u
(a &:& b) x = a x && b x

These operations on predicates make it more convenient to represent complex

Normally, input in GHCi is restricted
to a single line. To spread input over
multiple lines, start with :{ and
finish with :}, as in this example.
GHCi changes the prompt to a
vertical bar when in multi-line mode.

statements, for example “Every disc that isn’t black is either big or not white”:

> :{
| and [(isBig |:| neg isWhite) x
| | x <- things, (isDisc &:& neg isBlack) x]
| :}
True

Sequents are an alternative way of expressing the same statements. We can
write “Every disc that isn’t black is either big or not white” as

isDisc,¬isBlack � isBig,¬isWhite

or equivalently

isDisc &:& neg isBlack � isBig |:| neg isWhite

and “Some big triangle is grey” is

isBig, isTriangle � ¬isGrey

or equivalently

isBig &:& isTriangle � neg isGrey

Quantifiers

Yet another way to express statements involving “every” or “some” is to use
quantifiers. You’ve probably already seen the universal quantifier ∀ and the
existential quantifier ∃ in Mathematics. For example, the fact that for every
natural number n there is a prime number p that is greater than n is written as

Quantifiers
171 18

∀n ∈ N.∃p ∈ N.p is prime∧p > n

Prime numbers are defined like this:

p is prime iff ∀d ∈ N.d divides p → d = 1∨d = p

where

d divides p iff ∃m ∈ N.m×d = p.

If you haven’t seen the symbols ∀ and ∃ before then you have surely seen the

∀n ∈ N.∃p ∈ N. . . . is pronounced
“for all natural numbers n there
exists a natural number p such
that . . .”.

same thing expressed in words.
We can code the universal and existential quantifiers in Haskell:

U

Y

Z

R

S

W

T

X

V

every and some are the same as the
Prelude functions all and any,
except for the order of parameters.

every :: [u] -> Predicate u -> Bool
every xs p = and [p x | x <- xs]

some :: [u] -> Predicate u -> Bool
some xs p = or [p x | x <- xs]

The first parameter of every/some is the domain of quantification: a list of
things in the universe. The second parameter is a predicate, which is claimed to
be satisfied for every/some item in the domain of quantification.

Then “Every white triangle is small” becomes

> every (filter (isWhite &:& isTriangle) things) isSmall
True

“Every disc that isn’t black is either big or not white” becomes

> :{
| every (filter (isDisc &:& neg isBlack) things)
| (isBig |:| neg isWhite)
| :}
True

and “Some big triangle is grey” becomes

> some (filter (isBig &:& isTriangle) things) isGrey
True

Notice how Haskell’s filter function is used to express the list of things in Remember: filter::(a->Bool)->
[a] -> [a], where filter p xs yields
the list of items in xs for which
p :: a -> Bool produces True.

the universe that have some feature or combination of features. This is similar
to what we did in Chap. 6 to compute the list of big triangles

> [x | x <- things, isBig x && isTriangle x]
[T,W]
> filter (isBig &:& isTriangle) things
[T,W]

but using filter avoids writing out the list comprehension. That only saves
a few characters, but it prevents us from making mistakes with the syntax of
comprehension or getting one of the four uses of x wrong.

Sequents involve implicit quantification over the things in the universe of
discourse: a sequent is valid if everything in the universe that satisfies all of
the antecedent predicates satisfies at least one of the succedent predicates. An
advantage of using explicit quantification, as in the last few examples, is that
explicit quantifiers can be nested, which makes it possible to deal with more
complicated examples.

18

172 Chapter 18 · Relations and Quantifiers

Our example with prime numbers (“for every natural number n there is a
prime number p that is greater than n”) demonstrates how complex nesting of
quantification arises naturally in Mathematics: expanding the definition of a
prime number and what it means for one number to divide another gives

This involves nesting of quantifiers
inside other quantifiers
(∀n ∈ N.∃p ∈ N.∀d ∈ N. . . .), as well
as nesting of quantifiers inside
expressions ((∃m ∈ N. . . .) → . . .).

∀n ∈ N.∃p ∈ N.(

p is prime
︷ ︸︸ ︷

∀d ∈ N.(∃m ∈ N.m × d = p
︸ ︷︷ ︸

d divides p

) → d = 1 ∨ d = p) ∧ p > n

Relations

Predicates are limited to expressing features of individual things. Suppose that
we want to express relationships between things?

One such relationship is the property of one thing being bigger than another
thing. Our universe doesn’t include a predicate that captures “bigger”, but given
the predicates isBig and isSmall, the only way that a can be bigger than b is
if isBig a and isSmall b. We can use this fact to express the relationship of
one thing being bigger than another as a Haskell function:

isBigger :: Thing -> Thing -> Bool
isBigger x y = isBig x && isSmall y

On the other hand, there are relationships that can’t be obtained via
predicates that we already have, for example one expressing the relative
positions of things in the diagram. So this information would need to be added
to our Haskell representation of the universe:

isAbove :: Thing -> Thing -> Bool
isAbove R _ = False
isAbove S x = x `elem` [R,U,V,X,Y]
...

U

Y

Z

R

S

W

T

X

V

isBigger and isAbove are relations: Bool-valued functions, like predicates,
but taking two arguments of type Thing instead of just one, and delivering a
result of True if the relationship between the first and second things holds.

We can define the type of relations as an abbreviation (see page 11):

For a universe with more than one
kind of thing—for example, people
and dogs—we might instead define
type Relation u v =

u -> v -> Bool
and then
bestFriend ::

Relation Person Dog
with
Alice `bestFriend` Fido = True.

type Relation u = u -> u -> Bool

and then isBigger :: Relation Thing and isAbove :: Relation Thing.
Haskell allows us to use these as infix functions, for instance,
U `isBigger` X and S `isAbove` R, which avoids confusion about which thing
is bigger than/above the other.

And now we can express “S is above every black triangle” like this:

> every (filter (isBlack &:& isTriangle) things) (S `isAbove`)
False

(This is false because T is a counterexample.)
This uses a section (S `isAbove`) to partially apply isAbove to S. The

section yields a predicate which can be applied to a Thing to give True (S is
above that Thing) or False (it isn’t).

The section (`isAbove` X), which partially applies isAbove to its second
argument, can be used to express “Every white disc is above X”:

> every (filter (isWhite &:& isDisc) things) (`isAbove` X)
True

Another Universe
173 18

where(`isAbove`X) is the predicate that returnsTruewhenapplied to aThing
that is above X.

Now consider the statement “Every black triangle is above every grey
disc”, which involves two quantifiers. To make the Haskell code for this more
compact, let’s first define

blackTriangles :: [Thing]
blackTriangles = filter (isBlack &:& isTriangle) things
greyDiscs :: [Thing]
greyDiscs = filter (isGrey &:& isDisc) things

and then we have

> every blackTriangles (\x -> every greyDiscs (x `isAbove`))
False

(This statement is false because X isn’t above R or Y.)
This uses a lambda expression

\x -> every greyDiscs (x `isAbove`)

to express the predicate “is above every grey disc”. This has type Predicate You might need to read this twice to
understand why this gives “is above
every grey disc” rather than “every
grey disc is above”.

Thing. It’s applied to items from blackTriangles, so the variable x :: Thing
is drawn from that list. The result of the lambda expression is then True if x is
above every item in the list greyDiscs.

U

Y

Z

R

S

W

T

X

V

We could instead define a named function

isAboveEveryGreyDisc :: Predicate Thing
isAboveEveryGreyDisc x = every greyDiscs (x `isAbove`)

and then

every blackTriangles (\x -> every greyDiscs (x `isAbove`))

becomes

> every blackTriangles isAboveEveryGreyDisc
False

which is pretty close to the English formulation of the statement.
A similar statement is “Every big black triangle is above every grey disc”.

After defining

bigBlackTriangles :: [Thing]
bigBlackTriangles =

filter (isBig &:& isBlack &:& isTriangle) things

we have

> every bigBlackTriangles isAboveEveryGreyDisc
True

Another Universe

Let’s look at another universe of discourse, containing people

data Person = Angela | Ben | Claudia | Diana | Emilia
| Fangkai | Gavin | Hao | Iain

people :: [Person]
people = [Angela, Ben, Claudia, Diana, Emilia,

Fangkai, Gavin, Hao, Iain]

18

174 Chapter 18 · Relations and Quantifiers

and one relation on Person

loves :: Relation Person
Angela `loves` Ben = True
Angela `loves` _ = False
...

The loves relation between the people in the universe is given by the following
diagram, where an arrow pointing from a to b means that a `loves` b:

Angela Ben

Claudia Gavin

Emilia Fangkai

Iain Diana Hao

We can express statements like “Angela loves somebody”:

> some people (Angela `loves`)
True

“Everybody loves Ben”:

> every people (`loves` Ben)
False

“Somebody loves themself”:

> some people (\x -> x `loves` x)
False

and “Somebody loves somebody who loves them”:

> some people (\x -> some people (\y -> x `loves` y && y `loves` x))
True

Dependencies

Some subtleties arise in statements involving nested quantifiers, relating to
dependencies between “inner” and “outer” quantified variables.

Consider the expanded version of our example with prime numbers:

∀n ∈ N.∃p ∈ N.(

p is prime
︷ ︸︸ ︷

∀d ∈ N.(∃m ∈ N.m × d = p
︸ ︷︷ ︸

d divides p

) → d = 1 ∨ d = p) ∧ p > n

Exercises
175 18

This begins with ∀n ∈ N, which means that the statement is required to hold
for every n; let’s pick n = 69. Then we have ∃p ∈ N. In order for the statement
to hold, p must be chosen to be a prime number that is greater than n, for
example 73. That is, the choice of p depends on n. Then, d must be chosen to be

These dependencies come about
because the inner quantifiers are
within the scope of the outer
quantified variables. This means
that, in fact, even more dependencies
are possible: d is in the scope of n as
well as p, so d can depend on both n
and p. Likewise, m can depend on n,
p, and d .

a divisor of p, so the choice of d (73 or 1) depends on p. Finally, the choice of
m (1 or 73) depends on p and d .

Now let’s look at an example in English: “Everybody loves somebody”. This
can be interpreted in two ways, according to whether or not the choice of the
loved person depends on the choice of the loving person, or not. The distinction
between these is not clearly reflected in informal English.

The first interpretation, “For every person, there is some person who they
love”, allows the choice of the person who is loved to depend on the choice of
the person who is doing the loving. It can be expressed in Haskell as:

> every people (\y -> some people (y `loves`))
True

In this interpretation of the statement, the person loved by Angela might be
different from the person loved by Ben. (This is indeed the case: Angela loves
Ben and Ben loves Claudia and Gavin.) The dependency is conveyed in the
Haskell code by the fact that the existential quantifier is inside the predicate

\y -> some people (y `loves`)
of the universal quantifier. Consider the related function

\y -> head (filter (y `loves`)
people) of type Person -> Person.
Provided the existentially quantified
statement is true, this computes a
so-called “witness”: a person that
satisfies the predicate. The
dependency means that it needs to be
a function, with the output depending
on the value taken by the universally
quantified variable, rather than a
constant. This is known as a Skolem
function, after the Norwegian
mathematician Thoralf Skolem
(1887−1963), see 7 https://en.
wikipedia.org/wiki/Thoralf_Skolem.

The second interpretation is “There is some person who everybody loves”,
which requires a fixed choice of the person who is loved. In Haskell, this is

> some people (\x -> every people (`loves` x))
False

Now, the universal quantifier is inside the predicate

\x -> every people (`loves` x)
of the existential quantifier. The fact that the same person needs to be loved by
everybody means that, in our universe, the statement is false.

Exercises

1. Define a Haskell version of the ∃! quantifier (“there exists a unique”) and
give an example of its use.
Hint: Use the fact that ∃!x.P(x) is equivalent to

∃x.P(x)∧(∀x, y.P(x)∧P(y) → x = y).

In order to use equality in the definition, you will need to use the type

existsUnique :: Eq u => [u] -> Predicate u -> Bool

And then, to give an example of its use involving the type Thing, you will

U

Y

Z

R

S

W

T

X

V

need to change its definition to allow use of equality:

data Thing = R | S | T | U | V | W | X | Y | Z
deriving (Eq,Show)

2. Express the following Haskell codings of English statements from above as
sequents:

(a) “S is above every black triangle”
every (filter (isBlack &:& isTriangle) things) (S `isAbove`)

(b) “Every white disc is above X”
every (filter (isWhite &:& isDisc) things) (`isAbove` X)

https://en.wikipedia.org/wiki/Thoralf_Skolem
https://en.wikipedia.org/wiki/Thoralf_Skolem

18

176 Chapter 18 · Relations and Quantifiers

(c) “Angela loves somebody”
some people (Angela `loves`)

(d) “Everybody loves Ben”
every people (`loves` Ben)

(e) “Somebody loves themself”
some people (\x -> x `loves` x)

3. Translate the following Haskell code into English:

(a) some people (\x -> every people (x `loves`))
(b) every people (\x -> some people (`loves` x))

U

Y

Z

R

S

W

T

X

V

4. One way of coding the statement “Every white disc is bigger than some
triangle” in Haskell is as

every (filter (isWhite &:& isDisc) things) isBig
&& some (filter isTriangle things) isSmall

which says that every white disc is big and some triangle is small.
Can you express this as a sequent, without use of explicit quantification?
What about “There is some person who everybody loves”, coded as

some people (\x -> every people (`loves` x))

5. The first line of the song “EverybodyLoves Somebody” is “Everybody loves
somebody sometime”.

See 7 https://www.youtube.com/
watch?v=z-2_OstpR5c and
7 https://www.seeing-stars.com/
ImagePages/
DeanMartinGravePhoto.shtml.

(a) This statement is ambiguous. List the different possible readings.
(b) Pick a reading and express it in Haskell, after explaining how the

universeofpeoplewouldneed tobe enrichedwithadditional information.

6. In the Haskell coding of “Every white disc is bigger than some triangle” in
Exercise 4, the choice of the small triangle doesn’t depend on the choice of
the big white disc.
In “Every white thing is bigger than something having the same shape”,
there is a clear dependency. Express this statement in Haskell: once using
just predicates, and once using the relation isBigger.

7. Express the statements

(a) For everything white, there is some black triangle that it is above.
(b) There is some black triangle that everything white is above.

in Haskell.

https://www.youtube.com/watch?v=z-2_OstpR5c
https://www.youtube.com/watch?v=z-2_OstpR5c
https://www.seeing-stars.com/ImagePages/DeanMartinGravePhoto.shtml
https://www.seeing-stars.com/ImagePages/DeanMartinGravePhoto.shtml
https://www.seeing-stars.com/ImagePages/DeanMartinGravePhoto.shtml

177 19

Checking Satisfiability

Contents

Satisfiability – 178

Representing CNF – 178

The DPLL Algorithm: Idea – 180

The DPLL Algorithm: Implementation – 182

Application: Sudoku – 185

Exercises – 187

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_19

19

178 Chapter 19 · Checking Satisfiability

Satisfiability

You’ve seen how to use sequent calculus to check whether a sequent is univer-
sally true or has a counterexample. We’re now going to look into the problem
of checking satisfiability: whether a logical expression is true for at least one
combination of values for the variables, or predicates, that the expression con-
tains.

In Chap. 4, you saw how to check satisfiability using truth tables. In
Chap. 16, we did it in Haskell using the same method. There’s a way of check-
ing satisfiability using sequent calculus, see Exercise 1 below. In this chapter,
you’re going to learn about an algorithm called DPLL that checks satisfiability
efficiently, but only for expressions that are in conjunctive normal form (CNF).

Recall that a logical expression is in CNF if it consists of a conjunction of
clauses, where each clause is a disjunction of literals. A literal is a predicate or
variable, or the negation of a predicate or variable. Any logical expression can
be converted into CNF. In Chap. 17, you learned how to convert expressions to
CNFusingKarnaughmaps, for propositions with nomore than four variables.
For expressions with more variables, there’s a conversion method that uses
sequent calculus, see Exercise 17.7. There’s also a conversion algorithm that
works by iteratively applying the laws of Boolean algebra, see Exercise 2.

Many hard combinatorial problems can be represented using logic, and
then satisfiability checking can be used to find solutions. Examples of prac-
tical applications of satisfiability checking include: verification of hardware,
software, and communication protocols; AI planning and scheduling; AI diag-
nosis; circuit design; and genomics.

Representing CNF

We can represent propositions that are in CNF using the algebraic data type
Prop from Chap. 16. For example, the CNF expression

(¬A∨¬B∨C)∧(¬A∨D∨F)∧(A∨B∨E)∧(A∨B∨¬C)

corresponds to the following expression of type Prop:

cnf =
(Not (Var "A") :||: Not (Var "B") :||: (Var "C"))
:&&: (Not (Var "A") :||: (Var "D") :||: (Var "F"))
:&&: ((Var "A") :||: (Var "B") :||: (Var "E"))
:&&: ((Var "A") :||: (Var "B") :||: Not (Var "C"))

Drawing this as a tree gives:

https://doi.org/10.1007/978-3-030-76908-6_17
https://doi.org/10.1007/978-3-030-76908-6_17

Representing CNF
179 19

:&&:

:&&:

:&&:

:||:

:||:

Not

Var

"A"

Not

Var

"B"

Var

"C"

:||:

:||:

Not

Var

"A"

Var

"D"

Var

"F"

:||:

:||:

Var

"A"

Var

"B"

Var

"E"

:||:

:||:

Var

"A"

Var

"B"

Not

Var

"C"

The type Prop can express all propositions, including propositions that are
not in CNF. For an algorithm that works only on CNF expressions—like the
DPLL algorithm that we’re going to focus on in the rest of this chapter—it’s
convenient to use a simpler representation that can handle CNF expressions
and nothing else.

We start with atoms, from which we will build literals. Atoms may be vari-
ables taken from a fixed set, for instance:

data Var = A | B | C | D | E | F | G | H
deriving (Eq,Show)

or they may be applications of the predicates that were introduced in Chap. 6:

data PredApp = IsSmall Thing
| IsWhite Thing
| ...

deriving (Eq,Show)

or something else. We’ll regard them as arbitrary in our representation of CNF
expressions. This will allow a free choice of atoms, including Var and PredApp.

A literal is an atom (which we’ll call a positive literal) or a negated atom (a
negative literal):

data Literal atom = P atom | N atom
deriving Eq

The typeLiteral is polymorphic in the typeof atoms.ThusLiteralVarwould
be the type of literals over atoms of type Var, with values like P A (representing
A) and N B (representing ¬B).

Then, a clause is a disjunction of literals:

data Clause atom = Or [Literal atom]
deriving Eq

Examples of expressions of type Clause Var are Or [P A, N B, N C], representing
A ∨ ¬B ∨ ¬C, and Or [N A] (the single literal ¬A). The empty clause Or []
represents 0 (false), which is the identity element for disjunction.

19

180 Chapter 19 · Checking Satisfiability

ACNF expression, also known as a clausal form, is a conjunction of clauses:

data Form atom = And [Clause atom]
deriving Eq

The algebraic data types Clause and
Form share the special property of
having just one constructor that
takes just one parameter. Such types
are essentially new names for the
type that is the parameter of the
constructor, with the constructor
(for example Or :: [Literal atom]
-> Clause atom) providing the
translation in one direction, and
pattern matching (\(Or ls) -> ls)
providing the translation in the other
direction. Replacing “data” by
“newtype” in their definitions
improves the performance of
programs involving these types.

Here’s the earlier example again:

(¬A∨¬B∨C)∧(¬A∨D∨F)∧(A∨B∨E)∧(A∨B∨¬C)

as an expression of type Form Var:

cnf' =
And [Or [N A, N B, P C],

Or [N A, P D, P F],
Or [P A, P B, P E],
Or [P A, P B, N C]]

In the scientific literature, a logical
expression in CNF is often written
as simply a set (the CNF) of sets (the
clauses) of literals. We use And and
Or to remind ourselves of which is
which, and so that Haskell’s
typechecker can help catch our
mistakes.

And [] represents 1 (true), which is the identity element for conjunction. On the
other hand, a Form that contains an empty clause, like

And [Or [P A, N B, N C], Or []]

is equivalent to 0 because an empty clause is 0 and a ∧ 0 = 0.
Here are functions for converting values of these types to String, to make

them easier to read. The definition of show for Clause uses the function
intercalate from the Data.List library module to intersperse disjunction
symbols between the disjuncts in the clause, and similarly for the definition of
show for Form.

instance Show a => Show (Literal a) where
show (P x) = show x
show (N x) = "not " ++ show x

instance Show a => Show (Clause a) where
show (Or ls) = "(" ++ intercalate " || " (map show ls) ++ ")"

instance Show a => Show (Form a) where
show (And ls) = intercalate " && " (map show ls)

This gives:

> cnf'
(not A || not B || C) && (not A || D || F) && (A || B || E) && (A || B || not C)

The DPLL Algorithm: Idea

The Davis−Putnam−Logemann−Loveland (DPLL) algorithm takes a CNF
expression e as input and searches for sets of literals � that, if true, implyIt is important that � is a consistent

set of literals, meaning that it doesn’t
contain both a and ¬a for any atom
a. (Why?) That property is ensured
by DPLL.

that e is true, i.e. � � e. It produces a list of all such sets of literals. If the list is
non-empty then e is satisfiable; otherwise it is not satisfiable.

We’ll develop the idea behind the algorithm using simple CNF expressions
of type Form Var, and then use that understanding to develop the full algorithm
in Haskell, which works for any type of atoms.

The heart of the algorithm is a function that takes a CNF expression e and
an atom a and produces a simpler CNF expression that is equivalent to e if a is
true. Let’s look at our example

(¬A∨¬B∨C)∧(¬A∨D∨F)∧(A∨B∨E)∧(A∨B∨¬C)

The DPLL Algorithm: Idea
181 19

to see how that works. We start by regarding it as a list of four clauses:

¬A ∨ ¬B ∨ C
¬A ∨ D ∨ F
A ∨ B ∨ E
A ∨ B ∨ ¬C

that the expression requires to be true.
Now, let’s assume that A is true. How does that affect our list of clauses?

¬A ∨ ¬B ∨ C: If A is true then ¬A can’t be true. So, under the assumption
that A is true, ¬A ∨ ¬B ∨ C reduces to ¬B ∨ C.
¬A ∨ D ∨ F : Similarly, under the assumption that A is true, ¬A ∨ D ∨ F
reduces to D ∨ F .
A ∨ B ∨ E: On the other hand, if A is true then A ∨ B ∨ E is true; we don’t
care whether B and E are true or not.
A ∨ B ∨ ¬C: Similarly, if A is true then A ∨ B ∨ ¬C is true.

The following diagram summarises this:

¬A ∨ ¬B ∨ C ¬B ∨ C
¬A ∨ D ∨ F A−−→ D ∨ F
A ∨ B ∨ E
A ∨ B ∨ ¬C

The clauses that are true drop out: if A is true then

(¬A∨¬B∨C)∧(¬A∨D∨F)∧(A∨B∨E)∧(A∨B∨¬C)

is equivalent to

(¬B∨C)∧ (D∨F)

Now, let’s suppose that we were wrong about A and it’s actually false, that
is, ¬A is true. What do we get, starting from our original list of four clauses?

¬A ∨ ¬B ∨ C: If ¬A is true then ¬A ∨ ¬B ∨ C is true.
¬A ∨ D ∨ F : Similarly, if ¬A is true then ¬A ∨ D ∨ F is true.
A ∨ B ∨ E: If ¬A is true (i.e. A is false) then A ∨ B ∨ E reduces to B ∨ E.
A ∨ B ∨ ¬C: Similarly, if ¬A is true then A ∨ B ∨ ¬C reduces to B ∨ ¬C.

Putting together both cases gives the following diagram, with the original list
of clauses in the middle and the two alternatives—A is true and A is false—on
the right and left, respectively:

¬A ∨ ¬B ∨ C ¬B ∨ C
¬A←−−− ¬A ∨ D ∨ F A−−→ D ∨ F

B ∨ E A ∨ B ∨ E
B ∨ ¬C A ∨ B ∨ ¬C

We can now consider which atoms other than Amight be true or false. But
looking into the clauses on the left of the diagram, we can see that they’ll both
drop out if we assume that B is true:

¬A ∨ ¬B ∨ C ¬B ∨ C
B←−− ¬A←−−− ¬A ∨ D ∨ F A−−→ D ∨ F

B ∨ E A ∨ B ∨ E
B ∨ ¬C A ∨ B ∨ ¬C

19

182 Chapter 19 · Checking Satisfiability

What this sequence of steps shows is that the original CNF expression is true
if both ¬A and B are true. That is, � = ¬A,B is a solution to the satisfiability
problem for (¬A ∨ ¬B ∨ C) ∧ (¬A ∨ D ∨ F) ∧ (A ∨ B ∨ E) ∧ (A ∨ B ∨ ¬C).
It’s easy to see that another solution is � = ¬A,E,¬C:

¬A ∨ ¬B ∨ C ¬B ∨ C
¬C←−−− E←−− ¬A←−−− ¬A ∨ D ∨ F A−−→ D ∨ F

B ∨ E A ∨ B ∨ E
B ∨ ¬C B ∨ ¬C A ∨ B ∨ ¬C

There are four more solutions involving A being true instead of false:
A,¬B,D; A,¬B,F ; A,C,D; and A,C,F . These are found by reducing the
list of clauses on the right-hand side of the diagram.

The DPLL Algorithm: Implementation

The operation that we’ve identified as the heart of the DPLL algorithm is a
function cs << l that takes a list cs of clauses and a literal l and returns acs << l is pronounced “cs given l”.
simplified list of clauses that is equivalent to cs if l is true. It’s expressed in
Haskell like this:

(<<) :: Eq atom => [Clause atom] -> Literal atom -> [Clause atom]
cs << l = [Or (delete (neg l) ls)

| Or ls <- cs, not (l `elem` ls)]

neg :: Literal atom -> Literal atom
neg (P a) = N a
neg (N a) = P a

This definition works for any type of atom that can be tested for equality. It
uses the function delete from the Data.List library module, which deletes anActually, delete only deletes the

first occurrence of the item. Using
this means that our clauses must
not contain repeated literals.

item from a list.
To show how the << function works, here’s another example that’s a little

more complicated than the one above. The clauses in cs are shown in the
leftmost column, and the other two columns show the effect of cs << l in two
steps, for l = P A :: Literal Var, which represents the positive literal A:

[Or ls [Or (delete ¬A ls)
cs | Or ls <- cs, | Or ls <- cs,

not (A `elem` ls)] not (A `elem` ls)]
¬A ∨ C ∨ D ¬A ∨ C ∨ D C ∨ D
¬B ∨ F ∨ D ¬B ∨ F ∨ D ¬B ∨ F ∨ D
¬B ∨ ¬F ∨ ¬C ¬B ∨ ¬F ∨ ¬C ¬B ∨ ¬F ∨ ¬C
¬D ∨ ¬B ¬D ∨ ¬B ¬D ∨ ¬B
B ∨ ¬C ∨ ¬A B ∨ ¬C ∨ ¬A B ∨ ¬C
B ∨ F ∨ C B ∨ F ∨ C B ∨ F ∨ C
B ∨ ¬F ∨ ¬D B ∨ ¬F ∨ ¬D B ∨ ¬F ∨ ¬D
A ∨ E
A ∨ F
¬F ∨ C ∨ ¬E ¬F ∨ C ∨ ¬E ¬F ∨ C ∨ ¬E
A ∨ ¬C ∨ ¬E

In the first step, we select the clauses from cs that don’t contain l (that is, A).
This is the effect of the part of the comprehension after the vertical bar, where
the generator Or ls <- cs extracts a list ls of literals from each of the clauses
in cs. In the example, this removes three clauses.

The DPLL Algorithm: Implementation
183 19

In the second step, we remove the negation of l (that is, ¬A) from the
remaining clauses, if it appears. That’s the effect of the part of the comprehen-
sion before the vertical bar. In the example, it simplifies two clauses and leaves
the others unchanged.

Continuing the example, here’s the result of cs << A from the rightmost These reductions come directly from
the rules of the sequent calculus. For
example,

A � C ∨ D ¬R
A � ¬A ∨ C ∨ D

and

I
A � A ∨ E

The DPLL algorithm applied to a
CNF expression e can, therefore, be
regarded as searching for both a
consistent set of literals � and a
proof in sequent calculus that � � e.
The fact that e is in CNF makes the
proof search easy.

column above together with the result of cs << ¬A, where N A, the negation of
l, is assumed to be true:

cs cs << A cs << ¬A
¬A ∨ C ∨ D C ∨ D
¬B ∨ F ∨ D ¬B ∨ F ∨ D ¬B ∨ F ∨ D
¬B ∨ ¬F ∨ ¬C ¬B ∨ ¬F ∨ ¬C ¬B ∨ ¬F ∨ ¬C
¬D ∨ ¬B ¬D ∨ ¬B ¬D ∨ ¬B
B ∨ ¬C ∨ ¬A B ∨ ¬C
B ∨ F ∨ C B ∨ F ∨ C B ∨ F ∨ C
B ∨ ¬F ∨ ¬D B ∨ ¬F ∨ ¬D B ∨ ¬F ∨ ¬D
A ∨ E E
A ∨ F F
¬F ∨ C ∨ ¬E ¬F ∨ C ∨ ¬E ¬F ∨ C ∨ ¬E
A ∨ ¬C ∨ ¬E ¬C ∨ ¬E

The main function of the DPLL algorithm takes a CNF expression e and
produces all sets (represented as lists) of literals that, if true, imply that e is true.
Here’s our first version of its definition, which omits some details that will be
supplied soon: The DPLL algorithm was introduced

by Martin Davis, George Logemann
and Donald Loveland in 1962 as a
refinement of an earlier algorithm
due to Davis and Hilary Putnam, see
7 https://en.wikipedia.org/wiki/
DPLL_algorithm. The Rolling
Stones’s first international number
one hit “(I Can’t Get No)
Satisfaction” is a homage to the
DPLL algorithm. Just kidding!

dpll :: Eq atom => Form atom -> [[Literal atom]]
dpll (And []) = ...
dpll (And (Or [] : cs)) = ...
dpll (And (Or (l:ls) : cs)) =

[l : ls | ls <- dpll (And (cs << l))]
++
[neg l : ls | ls <- dpll (And (Or ls : cs << neg l))]

The definition of dpll is recursive. It computes all solutions that are
obtained by assuming that the literal l is true, and (separately) by assuming
that its negation neg l is true, and then appends them. The recursive calls will
do the same thing for other literals, continuing the process until one of the base
cases is reached. This is another example of a divide and conquer algorithm,
like quicksort on page 86: we split a problem into two simpler problems and
then combine the solutions to those simpler problems to give a solution to the
original problem.

In this version of the definition of dpll, the literal l is chosen to be the
first literal in the first clause, Or (l:ls). When l is assumed to be true, that
clause doesn’t contribute any further to the result (that is, the recursive call is
dpll (And (cs << l))) because it contains l and is therefore true. On the other
hand, when its negation neg l is assumed to be true, the rest of that clause
is taken into account when computing the result (that is, the recursive call is
dpll (And (Or ls : cs << neg l))) since in that case, Or (l:ls) reduces to
Or ls.

The definition of dpll is missing the right-hand side of its two base cases.
The first is for the case of a CNF expression containing no clauses. As explained
earlier, such an expression is true: the conjunction of the empty set of conjuncts
is 1. The second is for the case where the first clause is empty. In that case,
the expression is false: the disjunction of the empty set of disjuncts is 0, and
conjoining 0 with anything gives 0. We can, therefore, complete the above
definition as follows:

https://en.wikipedia.org/wiki/DPLL_algorithm
https://en.wikipedia.org/wiki/DPLL_algorithm

19

184 Chapter 19 · Checking Satisfiability

dpll :: Eq atom => Form atom -> [[Literal atom]]
dpll (And []) = [[]] -- one trivial solution
dpll (And (Or [] : cs)) = [] -- no solution
dpll (And (Or (l:ls) : cs)) =

[l : ls | ls <- dpll (And (cs << l))]
++
[neg l : ls | ls <- dpll (And (Or ls : cs << neg l))]

Note the difference between the results for the two base cases! In the first
base case, the expression is true so the empty set of literals is a solution. In
the second base case, the expression is false so there are no solutions. The fact
that there are no solutions to this sub-problem doesn’t necessarily mean that
there are no solutions to the original problem. It just means that this particular
path in the search, under which a particular set of assumptions have been made
about the truth of literals, doesn’t lead to a solution.

Let’s continue the example, looking into the branch where ¬A has been
assumed to be true. It isn’t in the code for dpll, but we can take a little shortcut
by observing that there are two so-called unit clauses, each containing a single
literal: E and F . A solution always has to require that such literals are true;
assuming that one is false would lead immediately to an empty clause, with no
solution. The subsequent choice of assuming that C is true is forced for the
same reason:

cs << ¬A cs << ¬A cs << ¬A
<< E << F << E << F

<< C
¬B ∨ F ∨ D
¬B ∨ ¬F ∨ ¬C ¬B ∨ ¬C ¬B
¬D ∨ ¬B ¬D ∨ ¬B ¬D ∨ ¬B
B ∨ F ∨ C
B ∨ ¬F ∨ ¬D B ∨ ¬D B ∨ ¬D
E
F
¬F ∨ C ∨ ¬E C
¬C ∨ ¬E ¬C []

The empty clause in the last step means that there’s no solution if ¬A is
assumed to be true. According to Exercise 3 below, there’s no solution if A
is assumed to be true. So there’s no solution to the satisfiability problem: the
original CNF expression is not satisfiable. This is confirmed by running the
dpll function:

> dpll example2
[]

As already mentioned, we didn’t completely follow the implementation of
dpll in this example. Instead of always using the first literal in the first clause
for the case split, which is what the function definition says, we used the literal in
a unit clause if one was present. This refinement is incorporated in the followingThis strategy is called unit

propagation, see 7 https://en.
wikipedia.org/wiki/
Unit_propagation.

(final) version of dpll, which reorders the clauses before making the choice of
literal:

dpll :: Eq atom => Form atom -> [[Literal atom]]
dpll f =

case prioritise f of
[] -> [[]] -- the trivial solution
Or [] : cs -> [] -- no solution
Or (l:ls) : cs ->

[l : ls | ls <- dpll (And (cs << l))]

https://en.wikipedia.org/wiki/Unit_propagation
https://en.wikipedia.org/wiki/Unit_propagation
https://en.wikipedia.org/wiki/Unit_propagation

Application: Sudoku
185 19

++
[neg l : ls | ls <- dpll (And (Or ls : cs << neg l))]

prioritise :: Form atom -> [Clause atom]
prioritise (And cs) = sortOn (\(Or ls) -> length ls) cs

The function prioritise uses the sortOn function from the Data.List library
module to sort the clauses in order of increasing length so that the ones with
the fewest literals, including unit clauses if any, are first. The improvement
is dramatic: for the Sudoku example below, it makes the difference between
producing a result in a few seconds and running overnight with no result. Other
choices for prioritise are possible.

In practice, DPLL is often very efficient. But it’s very slow in some cases,
taking time that is exponential in the size of its input, which is the same as check-
ing satisfiability using truth tables. No algorithm for satisfiability is known that
doesn’t share this property. The efficiency ofDPLLandother satisfiability algo-
rithms boils down to how their heuristics—in the case of DPLL, the choice of

In fact, satisfiability is a so-called
NP-complete problem, meaning that
if it can be solved efficiently in every
case then a very large class of
difficult algorithmic problems also
have efficient solutions, and vice
versa, see 7 https://en.wikipedia.org/
wiki/NP-completeness. The question
of whether there is an efficient
solution to any NP-complete
problem is the so-called “P versus
NP” problem. There is a $1 million
prize for the first person to prove
either that P=NP—an algorithm for
satisfiability that is always efficient
would suffice—or P�=NP.

the function prioritise—perform in problems that arise in practice.

Application: Sudoku

As an interesting and fun application of DPLL, we’re going to use it to solve
sudoku puzzles. A sudoku puzzle is a 9×9 grid with some cells filled with digits
from 1 to 9. For example:

9 2
9 4 6 3

3 6 8 1
6 9 3
9 8 2 1

2 7 5
3 5 7 4

5 1 7 8
4 1

The aim is to fill in the rest of the cells with digits so that each column, each See 7 https://sudokuguy.com/ for
lots of sudoku tutorials.row, and each of the outlined 3 × 3 regions contain all of the digits from 1 to

9. Here is a solution to the puzzle above, which is a very difficult one to solve
manually:

1 9 4 3 7 6 8 5 2
7 5 8 2 9 1 4 6 3
3 2 6 4 5 8 1 9 7
6 7 1 9 4 5 3 2 8
9 4 5 8 3 2 6 7 1
8 3 2 1 6 7 9 4 5
2 6 3 5 1 9 7 8 4
5 1 7 6 8 4 2 3 9
4 8 9 7 2 3 5 1 6

Solving a sudoku puzzle can be viewed as a satisfiability problem, that we
can solve using DPLL. The starting configuration of the puzzle together with
all of the rules about the allowed placement of digits can be formulated as a

https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/NP-completeness
https://sudokuguy.com/

19

186 Chapter 19 · Checking Satisfiability

very large CNF expression. Then a solution to the puzzle is a placement of the
missing digits which satisfies that expression.

We’ll use triples of integers as the atoms in our representation. The triple
(i,j,n) represents the cell in the ith row and jth column being occupied by the
digit n. So the following code represents the requirement that every cell in the
puzzle is filled:

allFilled :: Form (Int,Int,Int)
allFilled = And [Or [P (i,j,n) | n <- [1..9]]

| i <- [1..9], j <- [1..9]]

This produces a CNF expression with 81 clauses, one for each cell. The first
clause is

Or [P (1,1,1), P (1,1,2), P (1,1,3), P (1,1,4), P (1,1,5),
P (1,1,6), P (1,1,7), P (1,1,8), P (1,1,9)]

which says that the cell in row 1 and column 1 must contain one of the digits
1−9.

Another requirement is that no cell is filled twice:

noneFilledTwice :: Form (Int,Int,Int)
noneFilledTwice = And [Or [N (i, j, n), N (i, j, n')]

| i <- [1..9], j <- [1..9],
n <- [1..9], n' <- [1..(n-1)]]

This produces a CNF expression with 2916 clauses, 36 for each cell. Each of
the clauses for the cell in row 1 and column 1 is of the form Or [N (1,1,n),
N (1,1,n′)] for 1 ≤ n′ < n ≤ 9, saying that n and n′ can’t both be in that cell.

The requirement that each row contains all of the digits 1−9 is:

rowsComplete :: Form (Int,Int,Int)
rowsComplete = And [Or [P (i, j, n) | j <- [1..9]]

| i <- [1..9], n <- [1..9]]

which produces 81 clauses, 9 for each row. The first clause for row 1 is

Or [P (1,1,1), P (1,2,1), P (1,3,1), P (1,4,1), P (1,5,1),
P (1,6,1), P (1,7,1), P (1,8,1), P (1,9,1)]

which says that the digit 1 much be in row 1 and column j for some 1 ≤ j ≤
9. Similar code—see Exercise 4 below—expresses the requirements that each
column and each of the outlined 3 × 3 squares contains all of the digits. Each
of those requirements corresponds to 81 clauses with 9 literals each.

Finally, we need to express the starting configuration of the puzzle. The one
above is given by a CNF expression composed of 30 unit clauses, one for each
entry:

sudokuProblem =
And [Or [P (1,2,9)], Or [P (1,9,2)], Or [P (2,5,9)],

Or [P (2,7,4)], Or [P (2,8,6)], ... etc ...]

The following function is useful for forming the conjunction of CNF expres-
sions:

(<&&>) :: Form a -> Form a -> Form a
And xs <&&> And ys = And (xs ++ ys)

and then the entire specification is

sudoku =
allFilled <&&> noneFilledTwice <&&> rowsComplete
<&&> columnsComplete <&&> squaresComplete
<&&> sudokuProblem

for a total of 3270 clauses containing 8778 literals.

Exercises
187 19

Unfortunately, although this is a complete specification of the problem, to
make it tractable forour implementationofdpllweneed toadd threemore con-
straints, each containing a large number of clauses. The additional constraints
are actually consequences of the ones above, and adding them dramatically
increases the size of the specification. But the effect of adding them is to restrict
the search space explored by dpll by reducing the number of false avenues.

The first additional constraint says that each rowcontainsno repeateddigits:

rowsNoRepetition :: Form (Int,Int,Int)
rowsNoRepetition = And [Or [N (i, j, n), N (i, j', n)]

| i <- [1..9], n <- [1..9],
j <- [1..9], j' <- [1..(j-1)]]

This adds 2916 clauses, 324 for each row, each containing two literals. Each
of the clauses for the first row is of the form Or [N (1,j,n), N (1,j ′,n)]
for 1 ≤ j ′ < j ≤ 9, saying that n can’t be in both cell (1, j) and cell (1, j ′).
See Exercise 4 below for the other two additional constraints, which express
the analogous non-repetition conditions for the columns and outlined 3 × 3
squares.

The revised specification

sudoku =
allFilled <&&> noneFilledTwice <&&> rowsComplete
<&&> columnsComplete <&&> squaresComplete
<&&> sudokuProblem <&&> rowsNoRepetition
<&&> columnsNoRepetition <&&> squaresNoRepetition

is composed of 12018 clauses containing 26274 literals, and can be solved by
dpll in a few seconds:

> :set +s
> dpll sudoku
[[P (1,2,9), P (1,9,2), P (2,5,9), ... etc ...]]
(21.94 secs, 7,178,847,560 bytes)

The command :set +s tells Haskell
to display elapsed time and space
usage after evaluation.

There’s only one solution—as usual for sudoku problems—and it’s the one
given above.

Exercises

1. Use sequent calculus to check whether or not the expressions (a∨b)∧(¬a∧
¬b) and ((a∧¬b)∨ c∨ (¬d ∧ b)∨ a)∧¬c are satisfiable. Use the following
observations:

• A proof which shows that � ¬e is universally valid amounts to a proof
that e is not satisfiable.

• A proof which shows that � ¬e is not universally valid amounts to a
proof that e is satisfiable, and the simple sequents that arise from the
proof can be used to give values for the atoms in e that makes it true.

2. Use the following laws of Boolean algebra to convert the expression (a ∧
¬b ∧ (c ∨ (d ∧ b)) ∨ (¬b ∧ ¬a)) ∧ c to CNF:

¬(a ∨ b) = ¬a ∧ ¬b ¬0 = 1 ¬¬a = a ¬1 = 0 ¬(a ∧ b) = ¬a ∨ ¬b
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∨ 1 = 1 = ¬a ∨ a (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c)
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) a ∧ 0 = 0 = ¬a ∧ a (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

a ∨ a = a = 0 ∨ a a ∨ (a ∧ b) = a a ∨ b = b ∨ a a ∨ (b ∨ c) = (a ∨ b) ∨ c
a ∧ a = a = 1 ∧ a a ∧ (a ∨ b) = a a ∧ b = b ∧ a a ∧ (b ∧ c) = (a ∧ b) ∧ c

19

188 Chapter 19 · Checking Satisfiability

3. Complete the example that began on page 182 by completing the branch
where A has been assumed to be true, to conclude that the problem has no
solution in that case. Unlike the branch on page 184 where ¬A has been
assumed to be true, there’s more than one sub-case.

4. Write Haskell code to express the requirements on sudoku puzzles that

• Each column contains all of the digits 1−9
• Each of the outlined 3 × 3 squares contains all of the digits 1−9
• Each column contains no repeated digits:
• Each of the outlined 3 × 3 squares contains no repeated digit

as CNF expressions.

5. Write a function (<||>) :: Form a -> Form a -> Form a that produces the
disjunction of two CNF expressions.

6. Write a function toProp :: Show a => Form a -> Prop that converts an
expression in clausal form to a proposition of type Prop, using show to con-
vert the atoms to variable names. Use toProp to compare the performanceTo do a proper comparison, you

should compile your Haskell code,
see 7 https://downloads.haskell.org/
~ghc/8.2.1/docs/html/users_guide/
usage.html, and use Haskell’s
profiler to measure performance, see
7 https://downloads.haskell.org/
~ghc/8.2.1/docs/html/users_guide/
profiling.html.

of not . null . dpll with the function satisfiable on page 151.
7. Improve the final version of dpll on page 184 by adding special treatment

of unit clauses and clauses containing two literals.
8. Use DPLL to solve some sudoku puzzles from newspapers and online

sources. Try to determine whether the difficulty of the puzzle affects the
time to find a solution.

https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/usage.html
https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/usage.html
https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/usage.html
https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/profiling.html
https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/profiling.html
https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/profiling.html

189 20

Data Representation

Contents

Four Different Representations of Sets – 190

Rates of Growth: Big-O Notation – 190

Representing Sets as Lists – 193

Representing Sets as Ordered Lists Without
Duplicates – 194

Representing Sets as Ordered Trees – 195

Representing Sets as Balanced Trees – 199

Comparison – 202

Polymorphic Sets – 202

Exercises – 203

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_20

20

190 Chapter 20 · Data Representation

Four Different Representations of Sets

Whenever you write a program that requires a kind of data that isn’t already
built into Haskell, you need to decide how to represent it in terms of the
existing types. Sometimes you’ll be able to find something appropriate in one of
Haskell’s librarymodules.Other times, youwill decide to use some combination
of existing types, or you’ll define a new algebraic data type.

The way that your data is represented has a major impact on your code.
For example, if you define a new algebraic data type, then some or all of your
functions will be defined by cases using the new type’s constructors. And you
might need to define helper functions on your new types that would already be
provided if you had decided to use built-in types instead.

In this chapter, we’re going to look at four different ways of representing
sets of integers, to show how the choice of representation of data affects your
code. To make it easy to compare the different choices, we’ll use the same type
name and implement the same functions for each choice of representation:

A list of types and function names
with their types, intended as a
declaration of what is provided by a
software component, is called an
API, which stands for “application
program interface”, or interface for
short. See 7 https://en.wikipedia.
org/wiki/API.

type Set
empty :: Set
singleton :: Int -> Set
set :: [Int] -> Set
union :: Set -> Set -> Set
element :: Int -> Set -> Bool
equal :: Set -> Set -> Bool

These should be self-explanatory, except perhaps for set, which takes a list of
elements and produces a set containing those elements.

One of the things that your choice of data representation affects is the run
time and space consumption of your code. The four examples below provide a
good opportunity to study how the run time of programs can be characterised,
and to see how the choice of data representation affects it.

Before proceeding, it is very important for you to understand that—at least
at this point in your study of programming, and most of the time later on—you
should strive to make your code simple, clear and above all correct, and forget
about efficiency!

» Premature optimization is the root of all evil.
Donald Knuth, 1974 Turing Award winner

That said, efficiency is sometimes important in programs that manipulate large
For example, efficiency is obviously
important in Google’s indexing
systems, which index hundreds of
billions of web pages, see 7 https://
www.google.com/search/
howsearchworks/crawling-indexing/.

amounts of data. In such cases, the best way to achieve the required efficiency is
via timingand/or spaceusagemeasurements on the running simple/clear/correct
version of the program, in order to identify where most of the time or space
is being used. Usually, it will turn out—often to the complete surprise of the
code’s author!—that the problem is in a few small critical parts of the program,
and then effort can be focused on improving just those parts.

Rates of Growth: Big-O Notation

Consider the Prelude function elem:

elem :: Eq a => a -> [a] -> Bool
m `elem` [] = False
m `elem` (n:ns) = m==n || m `elem` ns

What is a sensible answer to the question “What’s the run time of elem?” An
answer like “13.6milliseconds”mightbeaccuratebut it isn’t veryhelpful because
the exact run time will depend on the hardware used. More important, it will

https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/API
https://www.google.com/search/howsearchworks/crawling-indexing/
https://www.google.com/search/howsearchworks/crawling-indexing/
https://www.google.com/search/howsearchworks/crawling-indexing/

Rates of Growth: Big-O Notation
191 20

depend on the length of the second parameter. The time for a list with 10
elements will be very different from the time for a list with 10 billion elements.
It will also depend on where—and whether—the item in question appears in
the list.

We need a way to characterise the run time of functions that is dependent
on the size of the input. The best way of dealing with issues like where the item
appears in the list, in the case of elem, is to focus on worst-case run time, which
is when the item is not in the list at all. Best-case run time (where the item
appears at the beginning of the list) is uninteresting. Average-case run time is

In the case of elem, is the average
case when the item is halfway down
the list? If items have type Int,
perhaps it should be when the item is
not in the list, since no matter how
long the list is, almost all values of
type Int will be absent?

interesting but turns out to be much harder to determine.
The run time of a function for small inputs is usually unimportant. Much

more important is the run time for large and very large inputs, where the
difference between an efficient and inefficient function might be huge. In the
end, what matters is this:How does the worst-case run time of a function increase
for increasing sizes of input? From the answer to this question, we can work out
if it’s feasible to use the function on large inputs.

Big-O notation is used to describe rates of growth. For a list of length n,
the worst-case run time for elem will be an + b, where a is the time taken to
check one item in the list, including the time to compute the disjunction and
the overhead of the recursive call, and b is the overhead involved in starting
the computation. In big-O notation, the worst-case run time of elem is O(n).
This deliberately glosses over the “constant factors” a and b, since they will vary

O(n) is pronounced “big-O of n”.
The name “big-O” is used to
distinguish it from “little-o
notation”, see 7 https://en.
wikipedia.org/wiki/Big_O_notation.

according to the hardware used and the version of Haskell, and focuses on the
fact that the rate of growth of the run time with increasing size of input is linear.

The idea of big-O notation is that a function f isO(g) if g is an upper bound
for f , for big enough inputs, ignoring constant factors. Formally:

Definition. f is O(g) if there are constants c and m such that |f (n)| ≤ cg(n) for
all n ≥ m.

For example, 2n is O(12n
2) because 2n ≤ 1

2n
2 for all n ≥ 4. And 3n+ 17 is O(n)

because 3n + 17 ≤ 4n for all n ≥ 17.
Because constant factorsdon’tmatter, andneitherdoes thebaseof logarithms

or lower order terms in polynomials (see Exercise 1), big-O notation normally
uses simple functions: O(1), O(log n), O(n), O(n2), O(n3), O(2n), etc. And the
function used is the slowest-growing one that provides an upper bound: 2n is
O(n2) but it is alsoO(n), so we use the latter. We use the terminology: constant
time, logarithmic time, linear time, quadratic time, cubic time, exponential time,
etc. In big-O notation, n always refers to the size of the parameter, whatever
“size”means for the kind of data in question. In the case of lists, n refers to the
length of the list. For the trees that will come up later in this chapter, it refers
to the number of nodes in the tree.

The reason fordistinguishingbetween logarithmic time, linear time,quadratic
time, etc. but not (for example) between n and n/2 is shown by looking at the
graphs of these functions:

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation

20

192 Chapter 20 · Data Representation

y= log2 x versus y= x y= x/2 versus y= x

y= x versus y= x2/20 y= x2 versus y= 2x

The first graph compares logarithmic time with linear time. The logarithm
function grows very slowly. A function that takes logarithmic time can process
twice asmuchdata inonlyoneadditional unit of time. In comparison, a function
that takes linear time will require twice as much time to process twice as much
data. For a million items of data, the difference is between 20 units of time and
a million units of time.

The second graph compares two versions of linear time: n/2 versus n. Here
the difference is a constant factor. The second one will always take twice as long
as the first one. That’s a difference, but not a really substantial one in relation
to the other graphs: for a million items of data, the difference is between half a
million and a million units of time.

The third graph compares linear time with fast quadratic time, n2/20. Up
to 20 items, quadratic time is faster, but after that linear time is faster. For a
million items of data, the difference is between a million and 50 billion units of
time.

The final graph compares quadratic time with exponential time, and the
scales on the axes have been adjusted to show that the exponential is not just
a straight line. The exponential grows very quickly, taking twice as much time
to process each additional data item. For 100 items, the difference is between
10,000 and 1,267,650,600,228,229,401,496,703,205,376 units of time.

With elem, we’ve seen an example of a linear time function. We can
determine that it is O(n) by looking at the structure of the code:

elem :: Eq a => a -> [a] -> Bool
m `elem` [] = False
m `elem` (n:ns) = m==n || m `elem` ns

which includes a single recursive call on a list that is one item shorter. All further
function calls are to constant-time functions. So the time required is a constant
for each recursive call, with one recursive call for each item in the list.

Rates of Growth: Big-O Notation
193 20

Here’s an example of a quadratic time function:

subset :: Eq a => [a] -> [a] -> Bool
ms `subset` ns = and [m `elem` ns | m <- ms]

This function calls elem for each element of ms. We already know that elem is
linear, so the time to do that will beO(n2). (ActuallyO(mn), if ms has lengthm
and ns has length n, but in doing such calculations one often assumes that all
parameters have the same size.) There is a call to the linear-time function and
on a list of size n that will take timeO(n), but that’s less thanO(n2) so the result
is O(n2).

Finding all of the divisors of an n-digit binary number by exhaustive search
takes exponential time. Given an n-digit binary number m, testing all of the
binary numbers that are less than m to see if they are divisors of m will take
time O(2n), since there are 2n n-digit binary numbers. Each additional digit
doubles the number of potential divisors to check.

Representing Sets as Lists

We’ll start with the simplest representation of all, and define a set of integers to
be a list containing the elements in the set:

type Set = [Int]

So the set {1, 2, 3} can be represented by the list [1,2,3] or [3,2,1] or
[1,1,3,2,3], amongothers.The empty set is just the empty list, andsingleton
n is just [n]. The set function doesn’t need to do anything to convert a list to
a set, because it already is a set. We can use ++ for the union function. And the
element function is just elem from the Prelude:

empty :: Set
empty = []

singleton :: Int -> Set
singleton n = [n]

set :: [Int] -> Set
set ns = ns

union :: Set -> Set -> Set
ms `union` ns = ms ++ ns

element :: Int -> Set -> Bool
n `element` ns = n `elem` ns

Testing equality of sets using equality on [Int] would give the wrong
answer, because the same elements might be listed in a different order or some
elements might appear more than once. For example:

> [1,2,1,1] == [2,1]
False

even though[1,2,1,1] and[2,1] contain the same elements, and are therefore
equal as sets. So we define subset as a helper function, and define equal using
subset:

equal :: Set -> Set -> Bool
ms `equal` ns = ms `subset` ns && ns `subset` ms

where
ms `subset` ns = and [m `elem` ns | m <- ms]

20

194 Chapter 20 · Data Representation

Since singleton amounts to a single application of : and set is just the
identity function, they run in constant time,O(1). The function element is just
elem, which we have already seen is linear time, O(n), and the function union
is just ++:

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

which is linear time by the same reasoning as for elem. On the other hand,
equal is quadratic, since it calls subset twice, which we have already seen is
O(n2).

Representing Sets as Ordered Lists Without Duplicates

An easy improvement to our representation of sets using lists is to insist that
the lists are in ascending (or descending) order, and that there are no duplicated
elements. Putting the list in order makes it easier to search for elements, and
when duplicates are eliminated as well then testing set equality is easy.

We’ll need the nub and sort functions from Haskell’s Data.List library
module, so we start by importing them:

import Data.List(nub,sort)

Sets are still represented as lists of integers, but we’re only interested in lists
that satisfy an invariant: they need to be in ascending order and contain no
duplicates. We’ll spell out the invariant as a Haskell function, but it won’t be
used in the code so any other notation would be just as good:An advantage of defining the

invariant in Haskell is that it can
then be used in testing.

type Set = [Int]

invariant :: Set -> Bool
invariant ns = and [m < n | (m,n) <- zip ns (tail ns)]

Requiring that each element in the list is strictly less than the next one excludes
duplicates.

The empty set is still just the empty list and singleton n is still [n]. But
set needs to sort the list of elements into ascending order and remove any
duplicates to convert a list of elements to a set, while union needs to merge the
two sets, eliminating any duplicates and retaining the order to ensure that the
result satisfies the invariant:

empty :: Set
empty = []

singleton :: Int -> Set
singleton n = [n]

set :: [Int] -> Set
set ns = nub (sort ns)

union :: Set -> Set -> Set
ms `union` [] = ms
[] `union` ns = ns
(m:ms) `union` (n:ns) | m == n = m : (ms `union` ns)

| m < n = m : (ms `union` (n:ns))
| otherwise = n : ((m:ms) `union` ns)

Let’s check that these work:

Representing Sets as Ordered Lists Without Duplicates
195 20

> set [1,42,2,7,1,3,2]
[1,2,3,7,42]
> set [3,1,2] `union` set [1,7,4,1]
[1,2,3,4,7]

Testing whether or not an integer is in a set can now take advantage of the
fact that the list representation of the set is in ascending order. The definition
of element starts at the beginning of the list and checks consecutive elements
until it either finds the integer it’s looking for or else reaches an element that is
larger, meaning that the required element is absent:

element :: Int -> Set -> Bool
m `element` [] = False
m `element` (n:ns) | m < n = False

| m == n = True
| m > n = m `element` ns

Finally, testing equalityof sets representedasordered listswithoutduplicates
is the same as testing ordinary list equality:

equal :: Set -> Set -> Bool
ms `equal` ns = ms == ns

The change of data representation changes the run time of some functions
in the API. All good sorting functions require timeO(n log n), but nub requires
quadratic time, so set requires quadratic timeO(n2), while union still requires

Sorting a list so that duplicates are
eliminated can be done in O(n log n)
time, see Exercise 2. And, if ms has
length m and ns has length n then
ms `union` ns is O(m + n). But if we
assume—as is often done in these
calculations—that m = n, then
O(m + n) = O(2n) which is O(n).

linear time O(n) and singleton is still O(1).
Although taking advantage of the order of the list means that element is

able to return a result of False when it reaches an value that is larger than the
one it is looking for, rather than continuing all the way to the end of the list,
its worst-case run time is still linear, O(n). On the other hand, the run time of
equal is linear, which is much faster than before (to be precise, it’s linear in the
length of the shorter of the two parameter lists). In terms of worst-case run time,
that’s the only improvement with respect to the unordered list representation.
The run time of invariant doesn’t matter because it’s just documentation.

Representing Sets as Ordered Trees

We can do better than ordered lists by using a binary tree representation. If
done properly, checking if an integer is in a set will then take logarithmic time.
We will be able to check just one path in the tree from the root to the location
of the integer that we’re looking for. The length of such a path is at most the
depth of the tree, which is log2 n for a tree containing n values. The depth might be greater than

log2 n if the tree is unbalanced, see
page 198.

The first step is to define an appropriate algebraic data type for sets:

data Set = Nil | Node Set Int Set
deriving Show

This defines a binary tree with integer labels at each node. A set is either empty In a tree, the points from which
sub-trees hang—which in our trees
contain integer labels—are called
nodes. The node at the top of a tree is
called its root. The sub-trees along
the bottom—which in our trees are
all Nil—are called leaves. The depth
of a tree is the length of the longest
path from the root to a leaf. A tree is
binary if every node has at most two
sub-trees. See 7 https://en.wikipedia.
org/wiki/Binary_tree.

(Nil) or is aNodewith a left sub-tree, an integer (its “label”), and a right sub-tree.
Here’s an example:

Node (Node (Node (Node Nil 1 Nil) 2 Nil)
6
(Node Nil 10 (Node Nil 12 Nil)))

17
(Node (Node (Node Nil 18 Nil)

20
(Node Nil 29 (Node Nil 34 Nil)))

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Binary_tree

20

196 Chapter 20 · Data Representation

35
(Node (Node Nil 37 Nil)

42
(Node (Node Nil 48 Nil) 50 Nil)))

When drawn as a diagram, the terminology (“tree”, “node”, “label”, “sub-tree”,
etc.) becomes clearer:

17

6

2

1

Nil Nil

Nil

10

Nil 12

Nil Nil

35

20

18

Nil Nil

29

Nil 34

Nil Nil

42

37

Nil Nil

50

48

Nil Nil

Nil

We’re going to be interested in ordered binary trees in which the value atOrdered binary trees are also called
binary search trees, see 7 https://en.
wikipedia.org/wiki/
Binary_search_tree.

each node is greater than all of the values in its left sub-tree, and less than
all of the values in its right sub-tree. This property—which the example above
obeys—is expressed by the following invariant. It uses a helper function called
list that produces a list containing all of the elements in a set by visiting all of
its nodes and recording their labels:

invariant :: Set -> Bool
invariant Nil = True
invariant (Node l n r) =

and [m < n | m <- list l] &&
and [m > n | m <- list r] &&
invariant l && invariant r

list :: Set -> [Int]
list Nil = []
list (Node l n r) = list l ++ [n] ++ list r

Maintaining the invariant is what makes this representation so efficient. For
example, when searching for an integer in a set (element), each comparison of
the integer in question with the integer at a node will allow us to ignore half of
the remaining values in the tree, on average. Discarding half of the tree at each
stage reduces a large tree very quickly—in log2 n steps, where n is the number
of nodes—to a single node.

The empty set is represented by Nil and singleton yields a tree containing
a single node. The functions set and union require a helper function insert,
which adds an integer to a tree. It uses the values in each node to decide whether
the new element belongs to its left or right, and then recursively inserts the new
element in that sub-tree, leaving the other sub-tree untouched. If it eventually
finds that the element is already there then it does nothing; otherwise, it creates
a new node:

empty :: Set
empty = Nil

singleton :: Int -> Set
singleton n = Node Nil n Nil

insert :: Int -> Set -> Set
insert m Nil = Node Nil m Nil

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Binary_search_tree

Representing Sets as Ordered Trees
197 20

insert m (Node l n r)
| m == n = Node l n r
| m < n = Node (insert m l) n r
| m > n = Node l n (insert m r)

Here’s a picture of what inserting 11 into the above set does:

17

6

2

1

Nil Nil

Nil

10

Nil 12

11

Nil Nil

Nil

35

20

18

Nil Nil

29

Nil 34

Nil Nil

42

37

Nil Nil

50

48

Nil Nil

Nil

11< 17 ?

11> 6 ?

11> 10 ?

11< 12 ?

Note that the result of insert is the whole tree representing the set, including
Make sure that you understand
this point! If necessary, write out the
computation step-by-step on a
smaller example.

a new node containing the new element, if it wasn’t already there. The result is
not merely the new node.

To construct a set from a list, the items in the list are inserted one by one,
starting with an empty set. We can express that using foldr and insert:

set :: [Int] -> Set
set = foldr insert empty

Similarly, the union function uses insert to add each of the elements in one
set (computed using list) to the other set:

union :: Set -> Set -> Set
ms `union` ns = foldr insert ms (list ns)

The definition of element is similar to the definition of insert with respect
to the way that it finds its way to the node that might contain the value being
sought:

element :: Int -> Set -> Bool
m `element` Nil = False
m `element` (Node l n r)

| m == n = True
| m < n = m `element` l
| m > n = m `element` r

Here’s a picture of what element does when checking whether or not 15 is in
the above set:

17

6

2

1

Nil Nil

Nil

10

Nil 12

11

Nil Nil

Nil

35

20

18

Nil Nil

29

Nil 34

Nil Nil

42

37

Nil Nil

50

48

Nil Nil

Nil

15< 17 ?

15> 6 ?

15> 10 ?

15> 12 ?

False !

20

198 Chapter 20 · Data Representation

Since list traverses the tree from left to right, making a list of the values itThis is known as an inorder traversal,
see 7 https://en.wikipedia.org/wiki/
Tree_traversal.

encounters as it goes, and all trees representing sets respect the above invariant,
the result will be in ascending order without duplicates. So checking equality
of two sets can just use list equality on the resulting lists:

equal :: Set -> Set -> Bool
s `equal` t = list s == list t

The change to a representation of sets using ordered binary trees doesn’t
affect the run time of singleton (still O(1)) or equal (still O(n), since list
and list equality are both linear). The run time of element becomes O(log n)
for trees that are balanced, meaning that the left and right sub-trees of every
node differ in depth by no more than 1. (It’s not possible for them to always
have exactly the same depth, except for trees containing exactly 2d − 1 nodes
for some d .) Likewise for insert. And in that case, the run times of set and
union areO(n log n), since they both do n insertions, while list is linear,O(n).

Unfortunately, our trees are not guaranteed to be balanced. The tree
above, before 11 was inserted, is balanced. Following the insertion, it became
unbalanced: the node with label 10 has a left sub-tree with depth 0 and a right
sub-tree with depth 2. Here’s a highly unbalanced tree that contains the same
integers as the tree we started with above:

1

Nil 2

Nil 6

Nil 10

Nil 12

Nil 17

Nil 50

48

42

37

35

18

Nil 34

29

20

Nil Nil

Nil

Nil

Nil

Nil

Nil

Nil

Nil

Inserting 11 involves visiting 6 nodes instead of 4, which isn’t so bad. Nor is
checking whether or not 15 is in the set, for which element needs to visit 7
nodes instead of 5. But checking whether or not 22 is in the set would require
visiting 16 nodes instead of 5. So in the worst case, the run times of element
and equal are the same as for the representation using ordered lists, while for
set and union they’re worse. Bummer!

https://en.wikipedia.org/wiki/Tree_traversal
https://en.wikipedia.org/wiki/Tree_traversal

Representing Sets as Balanced Trees
199 20

Representing Sets as Balanced Trees

The good news is that it’s possible to make sure that the ordered trees we
use to represent sets are always balanced, using a clever data structure called
AVL trees that is a variation on ordered binary trees. Balance is maintained by

AVL trees are named after the
Russian mathematician and
computer scientist Georgy
Maximovich Adelson-Velsky, see
7 https://en.wikipedia.org/wiki/
Georgy_Adelson-Velsky, and the
Russian mathematician Evgenii
Mikhailovich Landis, see 7 https://
en.wikipedia.org/wiki/
Evgenii_Landis.

performing a re-balancing step after every insertion. The clever part is that it’s
possible to apply the re-balancing only to the nodes that are visited while doing
the insertion, rather than having it affect the whole tree, and that each of the
re-balancing steps requires only a “local” rearrangement that takes constant
time.

We start by defining the representation of sets to be the same as for ordered
binary trees, except that each node contains the depth of the tree with its root
at that node as well as its left and right sub-trees and its label:

type Depth = Int
data Set = Nil | Node Set Int Set Depth

deriving Show

depth :: Set -> Int
depth Nil = 0
depth (Node _ _ _ d) = d

Keeping track of the depth of each node is key to making re-balancing after
insertion efficient. Computing the depth of a tree is linear in the size of the
tree. If the depth of nodes involved in re-balancing needed to be recomputed,
re-balancing would require linear time as well instead of—as we will see—
logarithmic time.

Given an integer label and two sets (trees), the node function builds a node
with that label and those two sub-trees, computing the depth for the node from
the depths of the sub-trees:

node :: Set -> Int -> Set -> Set
node l n r = Node l n r (1 + (depth l `max` depth r))

As invariant, we will require that trees are ordered in the same sense as
before. In addition, they are required to be balanced, and the depth information
at each node is required to be accurate:

invariant :: Set -> Bool
invariant Nil = True
invariant (Node l n r d) =

and [m < n | m <- list l] &&
and [m > n | m <- list r] &&
abs (depth l - depth r) <= 1 &&
d == 1 + (depth l `max` depth r) &&
invariant l && invariant r

The definition of insert is the same as for ordered lists, except that the new
function rebalance is applied to each node that is encountered while looking
for the node at which to do the insertion, since those are the ones that might
potentially become unbalanced:

insert :: Int -> Set -> Set
insert m Nil = node empty m empty
insert m (Node l n r _)

| m == n = node l n r
| m < n = rebalance (node (insert m l) n r)
| m > n = rebalance (node l n (insert m r))

https://en.wikipedia.org/wiki/Georgy_Adelson-Velsky
https://en.wikipedia.org/wiki/Georgy_Adelson-Velsky
https://en.wikipedia.org/wiki/Evgenii_Landis
https://en.wikipedia.org/wiki/Evgenii_Landis
https://en.wikipedia.org/wiki/Evgenii_Landis

20

200 Chapter 20 · Data Representation

See 7 https://en.wikipedia.org/wiki/
AVL_tree for an animation showing
how re-balancing works.

Re-balancing is best understood using a few pictures which capture theways
that insertion of a single value below a node that obeys the balance property
might cause it to become unbalanced. It turns out that there are only two ways,
with their symmetric variants adding another two cases.

The first kind of unbalanced tree is shown by the tree on the left below. The
picture is meant to indicate that trees B and C have the same depth, with tree
A being 1 deeper, leading to a difference in depths of 2 at the node labelled y:

B CB

C
yx

y x

A

A

Balance is restored by replacing the tree on the left with the tree on the right.
Crucially, the order of the tree is preserved. In the tree on the left, we know that
all of the values in A are less than x, which is less than all of the values in B,
that all of those values are less than y, and that y is less than all of the values in
C. Those properties imply that the tree on the right is still ordered.

The second kind of unbalanced tree is shown on the left of the following
diagram. Here, the tree at the node labelled x is 2 deeper than D:

z

B

y

x

C

A

D

DCA

B

y

x z

Again, balance is restored by adding the sub-trees A, B, C, and D under nodes
with labels x, y, and z, in such a way that the order invariant is preserved.

The following definition of rebalance performs these re-balancing steps
(cases 1 and 3) and their symmetric variants (cases 2 and 4). Case 5 is for the
case where no re-balancing is required:

rebalance :: Set -> Set
rebalance (Node (Node a m b _) n c _)

| depth a >= depth b && depth a > depth c
= node a m (node b n c)

rebalance (Node a m (Node b n c _) _)
| depth c >= depth b && depth c > depth a

= node (node a m b) n c
rebalance (Node (Node a m (Node b n c _) _) p d _)

| depth (node b n c) > depth d
= node (node a m b) n (node c p d)

rebalance (Node a m (Node (Node b n c _) p d _) _)
| depth (node b n c) > depth a

= node (node a m b) n (node c p d)
rebalance a = a

Note that the definition of rebalance is not recursive: each call performs a
single re-balancing step, which takes constant time. Re-balancing is done at
each node that insert visits, but there are at most log n of those because the
tree is balanced.

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/AVL_tree

Representing Sets as Balanced Trees
201 20

Here’s a picture of what inserting 11 into the balanced tree on page 196 does,
leaving out re-balancing steps that make no changes:

17

6

2

1

Nil Nil

Nil

10

Nil 12

11

Nil Nil

Nil

35

20

18

Nil Nil

29

Nil 34

Nil Nil

42

37

Nil Nil

50

48

Nil Nil

Nil

11< 17 ?

11> 6 ?

11> 10 ?

11< 12 ?

⇓ case 4 of rebalance
applied to node labelled 10

17

6

2

1

Nil Nil

Nil

11

10

Nil Nil

12

Nil Nil

35

20

18

Nil Nil

29

Nil 34

Nil Nil

42

37

Nil Nil

50

48

Nil Nil

Nil

The definitions of empty, set, union and equal remain unchanged, while
singleton needs to add depth information. The definitions of list and
element are unchanged except that the pattern for Node needs to accommodate
the presence of depth information:

empty :: Set
empty = Nil

singleton :: Int -> Set
singleton n = Node Nil n Nil 1

list :: Set -> [Int]
list Nil = []
list (Node l n r _) = list l ++ [n] ++ list r

set :: [Int] -> Set
set = foldr insert empty

union :: Set -> Set -> Set
ms `union` ns = foldr insert ms (list ns)

element :: Int -> Set -> Bool
m `element` Nil = False
m `element` (Node l n r _)

| m == n = True
| m < n = m `element` l
| m > n = m `element` r

20

202 Chapter 20 · Data Representation

equal :: Set -> Set -> Bool
s `equal` t = list s == list t

Changing the representation of sets from ordered trees to AVL trees
improves the worst-case run times of insert (and therefore set and union)
and element to make themmatch the run times for those functions on ordered
binary trees that happen to be balanced. The main change is to the definition of
insert. Since rebalance takes constant time, insert has run time O(log n).

Comparison

Here’s a summary of the run times of our five functions on sets in all four of
our representations:

singleton set union element equal
Lists O(1) O(1) O(n) O(n) O(n2)
Ordered lists O(1) O(n log n) O(n) O(n) O(n)

Ordered trees O(1)
O(n log n)∗
O(n2)†

O(n log n)∗
O(n2)†

O(log n)∗
O(n)†

O(n)

Balanced trees O(1) O(n log n) O(n log n) O(log n) O(n)

* average case / † worst case

According to this comparison, balanced trees appear to be themost efficient
of these four representations of sets in terms of run time. But in general, the

It’s possible to implement union on
balanced trees in linear time, see
7 https://en.wikipedia.org/wiki/
AVL_tree.

decision of which representation to use depends on the mix of functions that
will be required. Even in this case, if we don’t expect to ever use equal and to use
element only rarely, then the simple representation in terms of unordered lists
might be the best on grounds of the efficiency of set and union, and simplicity.

Polymorphic Sets

This chapter has been devoted to four different ways of representing sets of
integers. But the choice of integers as elements was just to keep things simple.
The same code, with minor adjustments to the types of functions, will work for
sets of any kind of elements.

In the simplest representation of sets, as unordered lists, the functions
element and equal can’t be implemented without an equality test on set
elements. So a requirement that the element type supports equality needs to
be added to the polymorphic version of their types. This gives the following
API:

type Set a
empty :: Set a
singleton :: a -> Set a
set :: [a] -> Set a
union :: Set a -> Set a -> Set a
element :: Eq a => a -> Set a -> Bool
equal :: Eq a => Set a -> Set a -> Bool

In each of the other three representations of sets—as ordered lists without
duplicates, as ordered trees, and as balanced ordered trees—some functions
additionally require an ordering on set elements:

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/AVL_tree

Polymorphic Sets
203 20

type Set a
empty :: Set a
singleton :: a -> Set a
set :: Ord a => [a] -> Set a
union :: Ord a => Set a -> Set a -> Set a
element :: Ord a => a -> Set a -> Bool
equal :: Eq a => Set a -> Set a -> Bool

Despite the fact that the unordered list representation doesn’t require an
order relation on set elements, the types in this more restrictive version of
the API will work for that representation as well. First, an instance of Ord
is also an instance of Eq. Second, just as a non-polymorphic type signature
can be provided for a polymorphic function definition, a type signature with a
superfluous requirement—in this case, the Ord requirement for set, union and
element, for unordered lists—will match a definition that doesn’t make use of
the required functions.

Exercises

1. Show that:

(a) an + b is O(n)
(b) nd + nd−1 + · · · n + 1 is O(nd) for any integer d ≥ 0
(c) logb n is O(logd n) for any b, d
(d) 3n is not O(2n)

2. In our representation of sets as ordered lists without duplicates, converting
a list to a set required quadratic time:

set :: [Int] -> Set
set xs = nub (sort xs)

This definition of set removes duplicates after sorting, and nub requires
quadratic time. Instead, they can be removed during sorting.

(a) Give a modified version of quicksort from page 86 that does this.
(b) Unfortunately, although the average-case run time of quicksort is

O(n log n), its worst-case run time is O(n2). What is the worst case?
(c) Give a modified version of merge sort (Exercise 10.8) that removes

duplicates, whichwill have worst-case run time ofO(n log n). (Hint:The
code for union on page 194 will come in handy.)

(d) Define a version of nub that only removes duplicates when they are
consecutive. Would that help?

https://doi.org/10.1007/978-3-030-76908-6_10
https://doi.org/10.1007/978-3-030-76908-6_10

20

204 Chapter 20 · Data Representation

3. Show that the two AVL tree re-balancing steps

B CB

C
yx

y x

A

A

z

B

y

x

C

A

D

DCA

B

y

x z

preserve the order invariant.

4. Try representing sets as predicates:

type Set = Int -> Bool

What goes wrong?
5. Sets of integers may be represented using lists of intervals: the interval [a, b]

for a ≤ b represents the set of integers between a and b inclusive, where
[a, a] represents the set {a}. A list containing several intervals represents
the union of the sets represented by the intervals. If the intervals don’t
overlap or “touch” then this representation is space-efficient; if they’re kept
in ascending order then manipulation of sets can be made time-efficient.
Here’s one example of a set represented this way, and four non-examples,
where the interval [a, b] is represented as the pair (a,b) :: (Int,Int):

[(1,3),(7,7),(10,11)] represents {1, 2, 3, 7, 10, 11}
[(2,1),(5,6)] is invalid: [2, 1] isn’t a valid interval
[(1,4),(3,6)] is invalid: intervals overlap
[(1,4),(5,6)] is invalid: intervals “touch’’
[(3,4),(1,1)] is invalid: intervals aren’t in ascending order

Give a representation of sets as lists of intervals. What are the run times of
the functions?

6. Add a function delete :: Int -> Set -> Set to the four representations of
sets in this chapter, plus lists of intervals (Exercise 5). What is its run time?

205 21

Data Abstraction
Contents

Modular Design – 206

Sets as Unordered Lists – 207

Sets as Ordered Lists Without Duplicates – 208

Sets as Ordered Trees – 210

Sets as AVL Trees – 211

Abstraction Barriers – 212

Abstraction Barriers: SetAsOrderedTree and
SetAsAVLTree – 212

Abstraction Barriers: SetAsList and
SetAsOrderedList – 214

Testing – 216

Exercises – 217

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_21

21

206 Chapter 21 · Data Abstraction

Modular Design

So far you’ve been writing small programs. Imagine for a moment that—
perhaps 10 years from now—you’re a member of a team building the softwareA modern car contains about 100

million lines of code, including
central functionality (brakes,
engine), navigation, entertainment,
etc. It is estimated that a fully
autonomous car would contain
about 1 billion lines of code. See
7 https://spectrum.ieee.org/
transportation/self-driving/
accelerating-autonomous-vehicle-
technology.

for an autonomous robotaxi. At that point, you’ll be working on much larger
programs in collaboration with other team members.

Any significant software system is built fromcomponents that are—or could
have been—developed bydifferent people. Each component is designed towork
together with other components, with the connections between components
mediated by well-defined interfaces. An interface is designed to enable sim-
ple access to the functionality that the component provides, in such a way
that components can be combined without detailed knowledge of their internal
workings. For example, the brakes of the robotaxi should work regardless of
how the directional signals work. Some components provide functionality that
is likely to be useful outside the system that they were designed for and may,
therefore, be designed for future re-use.

How to make this way of building systems work well is the topic of mod-
ular design. As well as interface design and design for reuse, issues includeSee 7 https://en.wikipedia.org/wiki/

Modular_programming. means of combining components, decomposition of components into smaller
pieces, component hierarchies, large-scale system architecture, specification
versus implementation, abstraction and refinement, separation of concerns,
and information hiding.

In Haskell, software components consisting of a number of types and func-
tions are called modules, defined using the following syntax:

module MyModule where
import YourModule

type MyType = ...

myFunction :: ...
myFunction x y z | ... = ...
etc.

All module names begin with an upper case letter. Every module should be

It’s standard practice to put the
code for each module in a separate
file, with the code for MyModule
in a file called MyModule.hs.

relatively small and self-contained, so that it can be easily understood as a unit.
We’ve seen before how to import a module, using import as above. The

Haskell Prelude is imported automatically into all modules. To attach an inter-
face to a module, just give the names of the types and functions that it exports
for use by other code, when it is imported:

module MyModule
(MyType, myFunction, ...) where
import YourModule
...

If no interface is given, then all of the types and functions are exported. An
example of a function that should probably not be exported is a helper function
whose only use is in the definition of another function.

Using import leads to a situation where one module builds on top of the
functionality provided by one or more other modules. When a system is com-
posed of a large collection of modules, any given module may depend on not
just the modules that it directly imports, but also on the modules that they
import, and so on. Thus a small change to one module may affect many other
parts of the overall system, leading to a need for many further changes. The
point of interfaces is partly to isolate modules from one another so that such
knock-on effects of changes are minimised. Ideally, it should be possible to
view modules as black boxes that provide a certain functionality, and can be

https://spectrum.ieee.org/transportation/self-driving/accelerating-autonomous-vehicle-technology
https://spectrum.ieee.org/transportation/self-driving/accelerating-autonomous-vehicle-technology
https://spectrum.ieee.org/transportation/self-driving/accelerating-autonomous-vehicle-technology
https://spectrum.ieee.org/transportation/self-driving/accelerating-autonomous-vehicle-technology
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Modular_programming

Sets as Unordered Lists
207 21

replaced by another black box providing the same functionality without any
changes elsewhere in the system.

In this chapter, we’re going to study a very important special case of this
situation, in which the module being replaced provides the representation of a
type, like sets of integers in Chap. 20. Such a change might be motivated by
the need to remove a performance bottleneck. Using the same example, you’ll
see that defining such modules without appropriate interfaces doesn’t isolate
them adequately from modules that import them. The secret is to define them
as abstract data types, making their interface just large enough but no larger,
hiding internal details of the representation from external meddling, so that all
interaction with the representation goes via well-controlled routes.

Sets as Unordered Lists

We’ll start with our representation of sets of integers as unordered lists from
page 193, packaged as a module:

module SetAsList
(Set, empty, singleton, set, union, element, equal) where

type Set = [Int]

empty :: Set
empty = []

singleton :: Int -> Set
singleton n = [n]
...

We’ll use the type and functions in the API at the beginning of Chap. 20 as its
interface.

Then we build another module on top of SetAsList by importing it, and
including functions that refer to the functions that it exports:

module MyModule where
import SetAsList

intersect :: Set -> Set -> Set
ms `intersect` ns = [m | m <- ms, m `elem` ns]

intersect_prop :: Set -> Set -> Bool
intersect_prop ns ms =
(ns `intersect` ms) `equal` (ms `intersect` ns)

...

Suppose that MyModule includes the following function for selecting an inte-
ger from a non-empty set:

select :: Set -> Int
select ns = head ns

This definition is well typed: we have ns :: Set but SetAsList says

type Set = [Int]

so ns :: [Int], and therefore head ns :: Int, as required by the type signature
of select.

But now we have a problem: select is not a function, because it doesn’t
always take equal inputs to equal results! For example,intersect is commutat- That is: select doesn’t always take

equal inputs to == results.ive, as expressed by the QuickCheck property intersect_prop, so:

21

208 Chapter 21 · Data Abstraction

> ([1,2] `intersect` [3,2,1]) `equal` ([3,2,1] `intersect` [1,2])
True

but:

> select ([1,2] `intersect` [3,2,1])
1
> select ([3,2,1] `intersect` [1,2])
2

The problem doesn’t just affect the intersect function. For instance:

> set [1,2] `equal` set [2,1]
True

but:

> select (set [1,2])
1
> select (set [2,1])
2

This is a problembecause it showshow the results of computations involving
functions from SetAsList can be affected by changes in code that should be
innocuous. It is easy to imagine you, or a member of your team, replacing one
expression producing a result of type Setwith another expression that produces
a value that is equal to it, for example in order to simplify the code. Suddenly,
a function somewhere else produces a different result! And why has the left
rear directional signal started blinking faster? Oops, better go back and spend
a month re-testing all of the code that depends on that module!

As we’ll see after looking at the other representations of sets, the cause of
this problem is in the interface of SetAsList. The definition of select takes
advantageof the fact that sets are implementedas lists.Weneedawayofkeeping
that information internal to the module definition, so that code elsewhere can’t
use it.

Sets as Ordered Lists Without Duplicates

Let’s move on to our representation of sets of integers as ordered lists without
duplicates from page 194. Again, we put the code in a module:

module SetAsOrderedList
(Set, empty, singleton, set, union, element, equal) where

import Data.List(nub,sort)

type Set = [Int]

invariant :: Set -> Bool
invariant ns = and [m < n | (m,n) <- zip ns (tail ns)]
...

union :: Set -> Set -> Set
ms `union` [] = ms
[] `union` ns = ns
(m:ms) `union` (n:ns) | m == n = m : (ms `union` ns)

| m < n = m : (ms `union` (n:ns))
| otherwise = n : ((m:ms) `union` ns)

...

element :: Int -> Set -> Bool
m `element` [] = False

Sets as Ordered Lists Without Duplicates
209 21

m `element` (n:ns) | m < n = False
| m == n = True
| m > n = m `element` ns

...

Remember the invariant, expressed as a Haskell function: each element in a
list used to represent a set will be strictly less than the next one. The invariant is
very important. First, the definitions of union, element, and equal don’t work
for lists that don’t satisfy it. Second, the functions preserve it: for example, ifms
and ns satisfy the invariant then ms `union` ns will also satisfy the invariant.

Again, we build another module on top of SetAsOrderedList:

module MyModule where
import SetAsOrderedList

intersect :: Set -> Set -> Set
ms `intersect` ns = [m | m <- ms, m `elem` ns]

intersect_prop :: Set -> Set -> Bool
intersect_prop ns ms =
(ns `intersect` ms) `equal` (ms `intersect` ns)

...

Let’s look at that select function again:

select :: Set -> Int
select ns = head ns

The definition is still well typed, for the same reason. And the good news is that
it is no longer problematic: the head of any list that satisfies the invariant will
be the smallest element of the list. Therefore,

ms `equal` ns yields True

implies that

select ms == select ns yields True

But that’s the only good news.
The first problem is that there is nothing to prevent the functions in

SetAsOrderedList from being applied to values that don’t satisfy the invari-
ant. Because the code for union, element, and equal depends on their inputs
satisfying the invariant, the results will most likely be wrong. For example,

> [4,1,3] `union` [2,4,5,6]
[2,4,1,3,5,6]
> 1 `element` ([4,1,3] `union` [2,4,5,6])
False

despite the fact that 1 is in the list [2,4,1,3,5,6].
The second problem is that functions that don’t preserve the invariant can

be defined in modules that build on SetAsOrderedList. An example is the
following alternative definition of union:

badUnion :: Set -> Set -> Set
ms `badUnion` ns = ms ++ ns

The elements in its result are the unionof the elements in its inputs, but they need
not be arranged in ascending order and duplicates are possible. For example:

> set [3,1]
[1,3]

21

210 Chapter 21 · Data Abstraction

> set [2,1,2]
[1,2]
> set [3,1] `badUnion` set [2,1,2]
[1,3,1,2]

Again, applying element and equal to such sets gives the wrong answers, for
example:

> 2 `element` (set [3,1] `badUnion` set [2,1,2])
False

despite the fact that 2 is in the list [1,3,1,2].
This shows that direct access to the representation of sets as lists causes

problems, not just for the reason we saw in SetAsList, but also because there’s
nothing that requires functions built on top of SetAsOrderedList to respect its
invariant. Later in this chapter, you’ll see how to prevent such functions from
being defined.

Sets as Ordered Trees

We’ll now look into sets represented as ordered binary trees, as on page 195.
Here’s that code packaged as a module.

module SetAsOrderedTree
(Set (Nil, Node), empty, singleton, set, union,

element, equal) where

data Set = Nil | Node Set Int Set
deriving Show

invariant :: Set -> Bool
invariant Nil = True
invariant (Node l n r) =

and [m < n | m <- list l] &&
and [m > n | m <- list r] &&
invariant l && invariant r

...

insert :: Int -> Set -> Set
insert m Nil = Node Nil m Nil
insert m (Node l n r)

| m == n = Node l n r
| m < n = Node (insert m l) n r
| m > n = Node l n (insert m r)

...

To be able to manipulate trees in modules that import SetAsOrderedTree, we
need to export the constructors of the algebraic data type Set, and not just the
type name. Including Set (Nil, Node) in the export list, rather than just Set,
has that effect.

Again, as with sets represented as ordered lists, there is an invariant. In this
case, it says that at each node, the node label is greater than all of the values in
its left sub-tree, and less than all of the values in its right sub-tree. Again, the
invariant is preserved by the functions in SetAsOrderedTree and it needs to
be obeyed by inputs to functions like element and equal.

Let’s build anothermodule on top of SetAsOrderedTree, and try a different
way of defining a function for selecting an integer from a non-empty set:

module MyModule where
import SetAsOrderedTree

Sets as AVL Trees
211 21

select :: Set -> Int
select (Node _ n _) = n
...

This definition of select has the same problem as the select function
defined in terms of sets represented as lists on page 207: it isn’t a function,
because it doesn’t always take equal inputs to equal results:

> :{
| (set [0,3] `union` set [1,0,2])
| `equal` (set [1,0,2] `union` set [0,3])
| :}
True
> select (set [0,3] `union` set [1,0,2])
3
> select (set [1,0,2] `union` set [0,3])
2

The module SetAsOrderedTree also has the same problems as
SetAsOrderedList had earlier. First, there’s nothing to prevent its functions
from being applied to values that don’t satisfy the invariant, giving wrong
results:

> 1 `element` (Node Nil 2 (Node Nil 1 Nil))
False

despite the fact that 1 appears in the right sub-tree. Second, functions that don’t
preserve the invariant can be defined in modules that build on
SetAsOrderedTree.

Sets as AVL Trees

Following the same procedure for our final representation of sets, we can pack-
age the code for AVL trees on page 199 as a module too:

module SetAsAVLTree
(Set (Nil, Node), empty, singleton, set, union,

element, equal) where

type Depth = Int
data Set = Nil | Node Set Int Set Depth

deriving Show
...

invariant :: Set -> Bool
invariant Nil = True
invariant (Node l n r d) =

and [m < n | m <- list l] &&
and [m > n | m <- list r] &&
abs (depth l - depth r) <= 1 &&
d == 1 + (depth l `max` depth r) &&
invariant l && invariant r

...

insert :: Int -> Set -> Set
insert m Nil = node empty m empty
insert m (Node l n r _)

| m == n = node l n r

21

212 Chapter 21 · Data Abstraction

| m < n = rebalance (node (insert m l) n r)
| m > n = rebalance (node l n (insert m r))

...

Because an AVL tree is a kind of ordered tree, the same problems arise with
this module as with SetAsOrderedTree above, and there are no new problems.
In fact, the part of the invariant related to balance is only important to ensure
that the worst-case run time of insert and element are O(log n). All of the
functions in SetAsAVLTreewill still produce correct results if given ordered but
unbalanced trees, but they may fail to meet their specification for run time.

Abstraction Barriers

In the examples above, you’ve seen some of the problems that can arise when
building systems using Haskell modules. Summarising, it’s dangerous to allow
unrestricted access to the representation of data in a module. This holds espe-
cially when the module defines an invariant on a data representation that its
functions require inputs to satisfy and that functions are required to preserve.

We started with a vision in which a module defining one representation
of a type could ideally be replaced in a large system by a module defining a
different representation that provides the same functionality, without making
any changes elsewhere in the system, and the system would continue to work
as before. The problems that we’ve seen with using functions in an imported
module, and with defining new functions in terms of them, show that achieving
that vision isn’t easy. All of those problems would prevent smooth replace-
ment of one module by another. Moreover, consider the intersect func-
tion on page 207: this doesn’t even typecheck if we replace SetAsList by
SetAsOrderedTree, because it would attempt to use list comprehension on
trees!

We need to erect an abstraction barrier which prevents the kinds of abusesAbstraction refers to removing
details from something in order to
concentrate attention on its essence.
See 7 https://en.wikipedia.org/wiki/
Abstraction_(computer_science). An
abstraction barrier should prevent
access to those details.

that we have seen in the examples above. The barrier should make it impossible
for code outside a module to make inappropriate use of the type that is used in
the data representation or the way that data is represented using that type. It
should be impossible to supply inappropriate inputs to functions in themodule,
and impossible to define inappropriate functions over the types defined in the
module. But how?

The key is in the interface: it controls what the module exports for external
use. And in the interfaces for SetAsOrderedTree and SetAsAVLTree there
was a hint: we needed to export the constructors for Set in order to be able to
manipulate trees outside the module. Was that actually a good idea?

Abstraction Barriers: SetAsOrderedTree and
SetAsAVLTree

Let’s see what happens when the constructors are removed from the interface
of SetAsOrderedTree. We’ll call the result AbstractSetAsOrderedTree:

The definition of Set in
SetAsOrderedTree included
“deriving Show”, which
incorporates a definition of
show :: Set -> String into the
built-in show function. We’ve left it
out here on the principle that internal
details of the data representation
should be kept hidden.

module AbstractSetAsOrderedTree
(Set, empty, singleton, set, union, element, equal) where

data Set = Nil | Node Set Int Set
...

Then, when we try the same definition of select:

module AbstractMyModule where
import AbstractSetAsOrderedTree

https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Abstraction_(computer_science)

Abstraction Barriers: SetAsOrderedTree and SetAsAVLTree
213 21

select :: Set -> Int
select (Node _ n _) = n
...

Haskell doesn’t accept it, because the code makes reference to the constructor
Node, which is no longer exported:

AbstractMyModule.hs:7:11-14: error:
Not in scope: data constructor ‘Node’

That’s a good thing! The attempted definition of select isn’t a function, so we
want it to be rejected.

But suppose that we really really want a function that selects an integer
from a set? There’s no reasonable way to compute it using the functions that But there’s an unreasonable way:

given a set s, search through all
values of type Int, returning the first
n such that n `element` s.

are supplied by the API. So we’re forced to change the API to include it. Then
we add a definition of select inside AbstractSetAsOrderedTree—and the
modules packaging our other representations of sets—being careful to check
that select s == select t whenever s `equal` t. The following definition,
which delivers the smallest element in the set, satisfies that condition:

select :: Set -> Int
select s = head (list s)

Once we’ve added select to the API, we could add functions delete and See Exercise 20.6 for definitions of
delete for other set representations.isEmpty as well, to give us a way to iterate over sets:

delete :: Int -> Set -> Set
delete m Nil = Nil
delete m (Node l n r)

| m < n = Node (delete m l) n r
| m > n = Node l n (delete m r)
| m == n && isEmpty l = r
| m == n && isEmpty r = l
| otherwise = Node l min (delete min r)

where min = select r

isEmpty :: Set -> Bool
isEmpty Nil = True
isEmpty (Node _ _ _) = False

Adding these three functions yields the following API:

type Set
empty :: Set
isEmpty :: Set -> Bool -- new
singleton :: Int -> Set
select :: Set -> Int -- new
set :: [Int] -> Set
union :: Set -> Set -> Set
delete :: Int -> Set -> Set -- new
element :: Int -> Set -> Bool
equal :: Set -> Set -> Bool

AgoodAPI needs to balance the benefits of compactness with the requirements In a real-life software project,
changes to APIs are rare because
they typically require changes to
modules that have already been
finished and tested. At a minimum,
such changes need to be negotiated
with and approved by other team
members.

of modules that will use the functionality provided. For some purposes, our
original design was too compact: there are enough functions for building sets,
but only element and equal for accessing sets once built.

Hiding the constructorsmeans thatwe canonlybuild sets using the functions
in theAPI. So applying functions to values built using the constructors, whether
they satisfy the invariant or not, is impossible:

https://doi.org/10.1007/978-3-030-76908-6_20
https://doi.org/10.1007/978-3-030-76908-6_20

21

214 Chapter 21 · Data Abstraction

> 1 `element` (Node Nil 2 (Node Nil 1 Nil))
<interactive>:1:14-17: error:

Data constructor not in scope: Node :: t0 -> Integer -> t1 -> Set
<interactive>:1:19-21: error: Data constructor not in scope: Nil
etc.

Finally, if all of the functions in AbstractSetAsOrderedTree preserve
the invariant, and since subsequent code can only produce sets by applying
those functions, then all of the functions in modules that build on top of
AbstractSetAsOrderedTree will preserve the invariant as well. The upshot
is that there’s no way to produce sets that don’t satisfy the invariant.

The simple idea of omitting the constructors from the interface works well
for bothSetAsOrderedTree andSetAsAVLTree. The functions that are defined
inside the module need to have full access to the details of the data represen-
tation. Those functions can be trusted to preserve the invariant. The functions
that are defined outside the module should have no access to the data represen-
tation. Leaving the constructors out of the interface means that the only access
for these external functions is via the functions defined inside the module. They
are well behaved and preserve the invariant, and—provided the API provides
adequate functionality—are expressive enough for use in defining other func-
tions.

Abstraction Barriers: SetAsList and SetAsOrderedList

But what about SetAsList and SetAsOrderedList? They have no construc-
tors, except for the built-in constructors on lists. What should we remove from
their interfaces?

The answer is that we need to make their representation types into algebraic
data types too, with constructors that aren’t exported. For example:

We’ll start with the original API, not
including the functions select,
isEmpty and delete.

module AbstractSetAsList
(Set, empty, singleton, set, union, element, equal) where

data Set = MkSet [Int]

empty :: Set
empty = MkSet []
...

union :: Set -> Set -> Set
MkSet ms `union` MkSet ns = MkSet (ms ++ ns)
...

Here we’ve changed the type definition

type Set = [Int]

to

data Set = MkSet [Int]

but we haven’t exported the constructor MkSet, in order to prevent exter-
nal access to the representation. This change means that functions inside
AbstractSetAsList that take values of type Set as input need to use a pattern
like MkSet ns to get access to the representation of sets in terms of lists. Func-
tions that produce values of type Set need to apply MkSet to package a list as
a Set. Both of these can be seen in the definition of union.

What happens when we try to define select?

module AbstractMyModule where
import AbstractSetAsList

Abstraction Barriers: SetAsList and SetAsOrderedList
215 21

select :: Set -> Int
select ns = head ns

This produces a type error, because ns isn’t a list:

AbstractMyModule.hs:5:20-21: error:
• Couldn't match expected type ‘[Int]’ with actual type ‘Set’
• In the first argument of ‘head’, namely ‘ns’

In the expression: head ns
In an equation for ‘select’: select ns = head ns

Okay, so let’s try using MkSet to get access to the list:

module AbstractMyModule where
import AbstractSetAsList

select :: Set -> Int
select (MkSet ns) = head ns

Nope, MkSet isn’t exported from AbstractSetAsList so we can’t use it:

AbstractMyModule.hs:5:11-15: error:
Not in scope: data constructor ‘MkSet’

What happens with our earlier definition of the intersect function?

module AbstractMyModule where
import AbstractSetAsList

intersect :: Set -> Set -> Set
ms `intersect` ns = [m | m <- ms, m `elem` ns]

Again, there are type errors because ms and ns aren’t lists, and because the type
of intersect requires the result to be a set and not a list:

AbstractMyModule.hs:6:23-49: error:
• Couldn't match expected type ‘Set’ with actual type ‘[t1]’
• In the expression: [m | m <- ms, m `elem` ns]

In an equation for ‘intersect’:
ms `intersect` ns = [m | m <- ms, m `elem` ns]

AbstractMyModule.hs:6:34-35: error:
• Couldn't match expected type ‘[t1]’ with actual type ‘Set’
• In the expression: ms

In a stmt of a list comprehension: m <- ms
In the expression: [m | m <- ms, m `elem` ns]

AbstractMyModule.hs:6:47-48: error:
• Couldn't match expected type ‘t0 t1’ with actual type ‘Set’
• In the second argument of ‘elem’, namely ‘ns’

In the expression: m `elem` ns
In a stmt of a list comprehension: m `elem` ns

Using MkSet to get access to the underlying lists and to package the result as a
list doesn’t work for the same reason as for select above. Our earlier definition
of badUnion, in terms of ++, will fail as well.

21

216 Chapter 21 · Data Abstraction

Once the API is extended to include the functions select, isEmpty andRemember that the definition of
select needs to ensure that
select s == select t whenever
s ` equal` t. The following definition
does the trick:
select :: Set -> Int
select (MkSet ns) = minimum ns
(Using maximum would work just as
well.)

delete, they can be used to define intersect:

intersect :: Set -> Set -> Set
s `intersect` t

| isEmpty s = empty
| choice `element` t

= singleton choice `union` (rest `intersect` t)
| otherwise = rest `intersect` t
where choice = select s

rest = delete choice s

This definition works for all representations of sets, not just lists. And since
it’s defined in terms of the functions in the API, it preserves the relevant invari-
ant, if any.

Exactly the same idea works with SetAsOrderedList: we change the type
definition from

type Set = [Int]

to

data Set = MkSet [Int]

change the function definitions inside SetAsOrderedList to use MkSet to get
access to the representation of sets as ordered lists without duplicates, and omit
MkSet from the interface.

These examples show how to define an abstract data type, in which the
representation of data is kept private to the functions that need to access it
while being protected from inappropriate external access. We always use an
algebraic data type to define the representation, even if only one constructor
is required, and then omit the constructor from the interface so that it is only
accessible to those internal functions. All external access is forced to take place

Abstract data types were first
proposed by Barbara Liskov (1939−),
winner of the 2008 Turing Award
(see 7 https://en.wikipedia.org/wiki/
Barbara_Liskov) and Stephen Zilles
in connection with the design of the
CLU programming language, see
7 https://en.wikipedia.org/wiki/
CLU_(programming_language).

via the well-behaved functions that are provided for that purpose. As a result,
another representation that provides the same functionality can be swapped in
without changing anything else in the system!

Note that this method doesn’t just make it difficult to discover information
about the data representation. The representation is completely hidden by the
type system. There’s no way to penetrate the abstraction barrier: it’s impossible
to write code that gets access to the representation. Even if we manage to guess
what it is, there’s no way to take advantage of that information.

Testing

There’s a tension between the need to test the functions of a system to make
sure that they work, and the need to break a large system up into modules with
interfaces: hiding information tends to make testing more difficult.

An example is with the invariants in the abstract data types above that
represent sets in terms of ordered lists, ordered trees, and AVL trees. It’s con-
venient to express these in Haskell for use by QuickCheck in testing that all of
the functions that manipulate the representation preserve the invariant. But it’s
inappropriate to export the implementation details that are required to express
the invariant for use outside the abstract data type, and that makes it awkward
to do the testing from outside the module.

https://en.wikipedia.org/wiki/Barbara_Liskov
https://en.wikipedia.org/wiki/Barbara_Liskov
https://en.wikipedia.org/wiki/CLU_(programming_language)
https://en.wikipedia.org/wiki/CLU_(programming_language)

Testing
217 21

In testing, it’s best to take a bottom-up approach, and attach an interface to In modular design, working top-down
means starting with the modules that
provide user-level functionality and
then proceeding to the modules that
are needed in order to implement
those, working “downwards”
through the import hierarchy.
Working bottom-up means starting
with the modules that provide the
basic data structures and algorithms
that will be required and then
building higher level functionality
step by step on top of those. See
7 https://en.wikipedia.org/wiki/Top-
down_and_bottom-up_design.

a module that hides information only after it has been thoroughly tested and
you’re confident that the internal details are stable and correct. Such tests on
individual functions in a module are known as unit tests. You can do that one
module at a time, starting from the “bottom” of the import hierarchy. Once you
reach the point of assemblingmodules into a system that provides functionality
to an end-user, you do system tests to check that the overall behaviour of the
system is correct.

It’s important to keep the unit tests with the module that they relate to, so
that they can be reused whenever that module is updated. Best is to keep them
inside the body of themodule, where they have access to the internal details that
they require to run. Once you have them there, you can include a function in
the interface that runs them and reports success or failure, for use in diagnosing
faults if anything goes wrong later.

Exercises

1. Give an example of a list that doesn’t satisfy the invariant for ordered lists
in SetAsOrderedList, for which element and equal produce the wrong
result.

2. Use QuickCheck to check that set for ordered trees produces trees that sat-
isfy the invariant, and that insert for ordered trees preserves the invariant.
Use QuickCheck to check that the definition of union for ordered trees is
commutative and that it preserves the invariant.
Hint: Excluding inputs that violate the invariant can be done using a con-
ditional test, but a randomly generated tree is very unlikely to satisfy the
invariant. Instead, apply set to randomly generated lists to produce trees
that satisfy the invariant, once you’ve done the first test to check that this
is the case.

3. Check that the definition of intersect given onpage 215works in amodule
which imports any of AbstractSetAsList, AbstractSetAsOrderedList,
AbstractSetAsOrderedTree, or AbstractSetAsAVLTree. It should be
commutative, produce a set that contains the intersection of the values in
its input sets, and preserve the invariant.

4. Define AbstractSetAsOrderedList as an abstract data type, with an API
that includes isEmpty, select, and delete.

5. The invariants for SetAsOrderedList, SetAsOrderedTree, and
SetAsAVLTree forbid duplicates. Investigate what happens when the func-
tions in these modules are supplied with inputs of type Set which contain
duplicates but otherwise satisfy the invariant. Does anything go wrong?

6. Define an abstract data type AbstractNat for natural numbers represented
as non-negative integers with the following API:

type Nat
fromInt :: Int -> Nat
isZero :: Nat -> Bool
plus :: Nat -> Nat -> Nat
minus :: Nat -> Nat -> Nat

The functions fromInt and minus should produce an error when the result
would otherwise be negative.
Define another module that imports AbstractNat and defines functions It isn’t possible to give efficient

implementations of times and
toInt in terms of the functions in the
API given. In the real world, the
module structure would be altered to
include them in AbstractNat.

times :: Nat -> Nat -> Nat
toInt :: Nat -> Int

https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

21

218 Chapter 21 · Data Abstraction

7. (a) Define an abstract data type AbstractPolySetsAsList for polymor-
phic sets represented as unordered lists, with an API that includes the
functions

mapSet :: (a -> b) -> Set a -> Set b
foldSet :: (a -> a -> a) -> a -> Set a -> a

which should behave analogously to map and foldr for lists.
(b) Define a module on top of AbstractPolySetsAsList that defines the

functionintersect :: Set a -> Set a -> Set a in termsofmapSetand
foldSet, and check that it satisfies the properties in Exercise 3.

(c) Sincewe can’t dependon theorder of elements in the list used to represent
a set or the lack of duplicates, the function f passed to foldSet should
be associative, commutative, and idempotent (x f̀ ` x == x). Prove thatThe property that the starting value

supplied to foldSet is an identity
element for f is also desirable; it’s
required for foldSet in other
representations of sets, but in none
of the ones we have considered.

if these properties are satisfied then foldSet takes equal arguments to
equal results. Give counterexamples to show that this may not hold if
one of these properties isn’t satisfied.

219 22

Efficient CNF Conversion
Contents

CNF Revisited – 220

Implication and Bi-implication – 220

Boolean Algebra – 222

Logical Circuits – 223

The Tseytin Transformation – 225

Tseytin on Expressions – 227

Exercises – 228

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_22

22

220 Chapter 22 · Efficient CNF Conversion

CNF Revisited

You’ve learned several methods for converting logical expressions to conjunc-
tive normal form (CNF), starting with Karnaugh maps in Chap. 17. We’ll look
more closely at one of those methods, using the laws of Boolean algebra, later
in this chapter. Conversion to CNF produces an expression that is in a simple
regular form, and it’s the starting point for using the DPLL algorithm to check
satisfiability.

Unfortunately, converting an expression toCNFusing anyof thesemethods
will sometimes produce an expression that is much larger than the expression
you started with. In the worst case, converting an expression of size n to CNF
will produce an expressionof size 2n. For example, ifwe startwith the expression

See 7 https://en.wikipedia.org/wiki/
Conjunctive_normal_form.

(X1∧Y1)∨(X2∧Y2)∨· · ·∨(Xn∧Yn)

then the equivalent CNF expression contains 2n clauses, each having n literals.
If n = 20, that’s 1,048,576 clauses! You’ve seen that DPLL is pretty efficient,
but it won’t be able to cope with an input like that.

In this chapter, you’re going to learn about the Tseytin transformation, a
method for CNF conversion that produces much smaller expressions at the
cost of introducing additional variables. The result is a CNF expression that
isn’t equivalent to the original expression, because of the extra variables, but is
equisatisfiable, meaning that it’s satisfiable if and only if the original expression
was satisfiable. So it can be used as input to DPLL to get solutions to the
original expression.

The Tseytin transformation is used in digital circuit design, so we will look
at it first in that context and then at how to apply it to logical expressions.

Implication and Bi-implication

Back in Chap. 4, you learned about the implication (→) connective, which
captures the meaning of “if a then b”, but it hasn’t been used much since then.
To refresh your memory, here is its truth table again:

a b a → b
0 0 1
0 1 1
1 0 0
1 1 1

Implication can easily be expressed in terms of the other connectives: a → b =
¬a ∨ b. Here’s a truth table that proves the equivalence:

a b ¬a ¬a ∨ b a → b
0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1

Translating a → b to¬a∨b is sometimes useful to take advantage of everything
that you have learned about negation and disjunction.

Treating 0 and 1 as numbers instead of as the mathematical symbols for
false and true, it’s easy to see that a → b is also equivalent to a ≤ b. That’s one
reason for choosing those numbers to represent false and true. This equivalence
will turn out to be crucial in Chap. 23.

https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/Conjunctive_normal_form

Implication and Bi-implication
221 22

Related to implication is bi-implication (↔) or logical equivalence: ↔ is pronounced “if and only if”.
Some books use ⇔ instead of ↔.

a b a ↔ b
0 0 1
0 1 0
1 0 0
1 1 1

Bi-implication is used to express “a if and only if b”, which is often shortened to
“a iff b”. For example: x is even and prime iff x is 2. It’s equivalent to two-way
implication: a ↔ b = (a → b) ∧ (b → a):

a b a → b b → a (a → b) ∧ (b → a) a ↔ b
0 0 1 1 1 1
0 1 1 0 0 0
1 0 0 1 0 0
1 1 1 1 1 1

Another use for bi-implication a ↔ b is to express the mathematical state-
ment that “a is a necessary and sufficient condition for b”. This combines two
implications.

Mathematical definitions are
properly expressed using
bi-implication, for example:

An integer is even iff dividing it
by 2 leaves no remainder.

But often the word “if” is used
instead:

An integer is even if dividing it
by 2 leaves no remainder.

which, in the context of a definition,
is understood to mean iff.

First, “a is a necessary condition for b” means b → a. That is, if something
is b then it must be a. For instance, being able to read is a necessary condition
for being an accountant, but other conditions are also required.

Second, “a is a sufficient condition for b”means a → b. That is, if something
is a then it is guaranteed to be b. For instance, being outdoors in the open
without an umbrella when it’s raining hard is a sufficient condition for getting
wet, but there are other ways to get wet.

It’s straightforward to extend the type Prop of propositions from Chap. 16
to include implication and bi-implication:

type Name = String
data Prop = Var Name

| F
| T
| Not Prop
| Prop :||: Prop
| Prop :&&: Prop
| Prop :->: Prop
| Prop :<->: Prop

deriving Eq

All of the functions on Prop need to be extended to deal with the two new
cases. Here is an extended version of evalProp from page 149. The first six
cases are unchanged, and the cases for the new constructors :->: and :<->:
follow the same pattern as the cases for the other constructors. Implication
a :->: b corresponds to “if a then b else True” in Haskell, and bi-implication The comparison functions <, >, <=

and >= work on Bool as well as on
Int and other numeric types, with
False <= True == True and
True <= False == False. Therefore,
a :->: b also corresponds to a <= b.

corresponds to equality on Bool:

evalProp :: Valn -> Prop -> Bool
evalProp vn (Var x) = vn x
evalProp vn F = False
evalProp vn T = True
evalProp vn (Not p) = not (evalProp vn p)
evalProp vn (p :||: q) = evalProp vn p || evalProp vn q
evalProp vn (p :&&: q) = evalProp vn p && evalProp vn q
evalProp vn (p :->: q) = not (evalProp vn p) || evalProp vn q
evalProp vn (p :<->: q) = evalProp vn p == evalProp vn q

22

222 Chapter 22 · Efficient CNF Conversion

Extending showProp :: Prop -> String and names :: Prop -> Names is easy.
(Do it!)

In order to do proofs with sequents that contain implication and bi-
implication, we need to add the following rules to the sequent calculus:

� � a,� �, b � � →L
�, a → b � �

�, a � b,� →R
� � a → b,�

�, a → b, b → a � � ↔L
�, a ↔ b � �

� � a → b,� � � b → a,� ↔R
� � a ↔ b,�

The→L rule is a little difficult to understand on an intuitive level. It comes

I
�, a � a,�

� � a, �
¬L

�, ¬a � �

�, a � �

¬R
� � ¬a,�

�, a, b � �

∧L
�, a ∧ b � �

� � a,� � � b,�
∧R

� � a ∧ b,�

�, a � � �, b � �

∨L
�, a ∨ b � �

� � a, b,�
∨R

� � a ∨ b,�

� � a,� �, b � �

→L
�, a → b � �

�, a � b,�
→R

� � a → b,�

�, a → b, b → a � �

↔L
�, a ↔ b � �

� � a → b,� � � b → a,�
↔R

� � a ↔ b,�

The sequent calculus with → and ↔

from the rules for negation and disjunction, using the equivalence a → b =
¬a ∨ b. You’ll get used to it after doing a few proofs involving implication.

The →R rule expresses the proof strategy that to prove a → b you assume
a and then try to prove b. Notice that if � and � are empty, the rule becomes
just

a � b

� a → b
which says that the meaning of a → b, at the level of logical expressions, is the
same as a � b, at the level of sequents.

Finally, the ↔L and ↔R rules follow directly from the equivalence a ↔
b = (a → b) ∧ (b → a).

Here’s a proof that a → b � ¬b → ¬a is universally valid using the above
rules, together with the rest of the rules of the sequent calculus:

I¬b, a � a ¬R
¬b � a,¬a

I
b � b,¬a ¬L
b,¬b � ¬a →L

a → b,¬b � ¬a →R
a → b � ¬b → ¬a

Substituting ¬b for a and ¬a for b gives a proof of ¬b → ¬a � a → b, which
shows that a → b and its contrapositive, ¬b → ¬a, are equivalent.

Here is an example in English: the statement “If I eat too much then I feel
sick” is true iff its contrapositive “If I don’t feel sick then I didn’t eat too much”

The converse of a → b (If I eat too
much then I feel sick) is b → a (If I
feel sick then I ate too much). The
truth of the converse does not follow
from the truth of the original
statement (because there are other
reasons why I might feel sick), see
7 https://en.wikipedia.org/wiki/
Affirming_the_consequent.

is true.

Boolean Algebra

Exercise 19.2 asked you to use the laws of Boolean algebra to convert a logical
expression to CNF. Let’s look at that method again, adding laws to deal with
implication and bi-implication:

a ↔ b = (a → b) ∧ (b → a) a → b = ¬a ∨ b
¬(a ∨ b) = ¬a ∧ ¬b ¬0 = 1 ¬¬a = a ¬1 = 0 ¬(a ∧ b) = ¬a ∨ ¬b

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∨ 1 = 1 = ¬a ∨ a (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c)
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) a ∧ 0 = 0 = ¬a ∧ a (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

a ∨ a = a = 0 ∨ a a ∨ (a ∧ b) = a a ∨ b = b ∨ a a ∨ (b ∨ c) = (a ∨ b) ∨ c
a ∧ a = a = 1 ∧ a a ∧ (a ∨ b) = a a ∧ b = b ∧ a a ∧ (b ∧ c) = (a ∧ b) ∧ c

There are a lot of equations here! The most difficult part of using them to
convert an expression to CNF is knowing which equation to apply at each step.
The following three-phase strategy works best:

https://en.wikipedia.org/wiki/Affirming_the_consequent
https://en.wikipedia.org/wiki/Affirming_the_consequent
https://doi.org/10.1007/978-3-030-76908-6_19
https://doi.org/10.1007/978-3-030-76908-6_19

Logical Circuits
223 22

1. First, use the laws in line 1 to eliminate all occurrences of ↔ and →.
2. Next, use the laws in line 2 to push ¬ inwards.
3. Finally, use the laws for distributivity of ∨ over ∧ in line 3 to push ∨ inside

∧.

The expression is now in CNF. Optionally, the laws a ∨ 1 = 1 = ¬a ∨ a,
a ∧ 0 = 0 = ¬a ∧ a, a ∨ a = a = 0 ∨ a, a ∧ a = a = 1 ∧ a and a ∧ (a ∨ b) = a
can be used to simplify the result.

Let’s now apply that strategy to convert the expression r ↔ (s∧ t) to CNF.
As usual, in each step the part of the expression that changes is underlined.

Phase 1: eliminate ↔ and →
r ↔ (s ∧ t)

Applying a ↔ b = (a → b) ∧ (b → a)
= (r → s ∧ t) ∧ (s ∧ t → r)

Applying a → b = ¬a ∨ b
= (¬r ∨ (s ∧ t)) ∧ (s ∧ t → r)

Applying a → b = ¬a ∨ b
= (¬r ∨ (s ∧ t)) ∧ (¬(s ∧ t) ∨ r)

Phase 2: push ¬ inwards

(¬r ∨ (s ∧ t)) ∧ (¬(s ∧ t) ∨ r)
Applying ¬(a ∧ b) = ¬a ∨ ¬b

(¬r ∨ (s ∧ t)) ∧ (¬s ∨ ¬t ∨ r)

Phase 3: push ∨ inside ∧
(¬r ∨ (s ∧ t)) ∧ (¬s ∨ ¬t ∨ r))

Applying a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(¬r ∨ s) ∧ (¬r ∨ t) ∧ (¬s ∨ ¬t ∨ r)

This example shows how more than one step is required in phase 1 to elimi-
nate all occurrences of↔ and→, even though the starting expression contained
only one occurrence. In many examples, more than one step is also required in
phase 2 to move all negations inwards as far as they will go, and in phase 3 to
push all occurrences of ∨ inside ∧ until an expression in CNF is obtained. But
once a phase is finished, there is no need to revisit it.

In some of the previous chapters, starting with Chap. 4, you have been
working with logical expressions built from variables which take the values 0
and 1. In other chapters, starting with Chap. 6, you have been working with
logical expressions built from predicates which are Bool-valued functions:

type Predicate u = u -> Bool

The reason for not picking one of these domains of logical expressions and This is exactly the same as the way
that the laws of ordinary algebra can
be applied without worrying whether
the expressions are interpreted using
rational numbers, or real numbers,
or complex numbers, or something
else: everything works, provided the
domain of interpretation is a field,
which is a set together with two
operations + and × that satisfy
certain laws, see 7 https://en.
wikipedia.org/wiki/
Field_(mathematics).

sticking to it consistently throughout is that it doesn’t matter. Since both of them
obey the laws of Boolean algebra, all of the ways of manipulating expressions
that you have learned will work for both!

Logical Circuits

By now, you’re used to writing logical expressions using names of variables or
predicates and connectives like ¬, ∧ and ∨. An alternative is to draw logical
circuit diagrams using symbols like these

https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)

22

224 Chapter 22 · Efficient CNF Conversion

AND OR NOT

Other logic gates are

NAND NOR XOR

where x NAND y = ¬(x ∧ y),
x NOR y = ¬(x ∨ y) and XOR is
“exclusive or”, x XOR y = x �= y.
See 7 https://en.wikipedia.org/wiki/
Logic_gate.

representing logic gates, and lines connecting them representing wires. For
example, the following circuit

b
a

c

is another way of writing the expression (a ∧ b) ∨ ¬c.
Expressions written using symbols always take the form of a tree, as you

saw when we used algebraic data types to represent arithmetic expressions and
propositions. You can see the circuit diagram above as a tree if you rotate it by
90◦, with the sub-trees corresponding to (a ∧ b) and ¬c joined by an OR gate.

There is more freedom in circuit diagrams than in logical expressions,
because wires can route signals to multiple gates. For example, the circuit

b
a

c

is equivalent to ¬(a ∧ b) ∨ ¬((a ∧ b) ∨ ¬c). Writing that expression requires
repetition of the sub-expression a ∧ b because the wire from the output of the
AND gate, which computes a ∧ b, goes to both a NOT gate and the first OR
gate.

Here’s where that expression comes from. If we label the “internal” wires in
the circuit diagram

b
a

c

v

w

x

y z
r

then it can be represented by the following set of logical equivalences, one for
each gate:

v ↔ a ∧ b
w ↔ ¬c
x ↔ ¬v
y ↔ v ∨ w
z ↔ ¬y
r ↔ x ∨ z

Solving for the output r by successively substituting for variables gives an
expression that is equivalent to the circuit:

r ↔ x ∨ z
↔ ¬v ∨ ¬y
↔ ¬(a ∧ b) ∨ ¬(v ∨ w)

↔ ¬(a ∧ b) ∨ ¬((a ∧ b) ∨ ¬c)

https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logic_gate

The Tseytin Transformation
225 22

The Tseytin Transformation

You have just seen how a circuit diagram can be represented by a set of logical
equivalences. Each of the equivalences corresponds to one of the gates in the
circuit: r ↔ (s ∧ t) for AND, r ↔ (s ∨ t) for OR, and r ↔ ¬s for NOT.

Earlier you saw how to convert the expression for anANDgate, r ↔ (s∧ t),
into CNF, yielding the result:

r ↔ (s∧t) : (¬r∨s)∧(¬r∨t)∧(¬s∨¬t∨r)

Youcando the same thing for the expressions forORandNOTgates, obtaining:

r ↔ (s ∨ t) : (¬s ∨ r) ∧ (¬t ∨ r) ∧ (¬r ∨ s ∨ t)
r ↔ ¬s : (s ∨ r) ∧ (¬r ∨ ¬s)

It follows that we can replace the list of logical equivalences that represent the
above circuit with the following list of CNF expressions:

v ↔ a ∧ b : (¬v ∨ a) ∧ (¬v ∨ b) ∧ (¬a ∨ ¬b ∨ v)
w ↔ ¬c : (c ∨ w) ∧ (¬w ∨ ¬c)
x ↔ ¬v : (v ∨ x) ∧ (¬x ∨ ¬v)
y ↔ v ∨ w : (¬v ∨ y) ∧ (¬w ∨ y) ∧ (¬y ∨ v ∨ w)

z ↔ ¬y : (y ∨ z) ∧ (¬z ∨ ¬y)
r ↔ x ∨ z : (¬x ∨ r) ∧ (¬z ∨ r) ∧ (¬r ∨ x ∨ z)

If we now take the conjunction of these:

(¬v ∨ a) ∧ (¬v ∨ b) ∧ (¬a ∨ ¬b ∨ v)
∧ (c ∨ w) ∧ (¬w ∨ ¬c)
∧ (v ∨ x) ∧ (¬x ∨ ¬v)
∧ (¬v ∨ y) ∧ (¬w ∨ y) ∧ (¬y ∨ v ∨ w)

∧ (y ∨ z) ∧ (¬z ∨ ¬y)
∧ (¬x ∨ r) ∧ (¬z ∨ r) ∧ (¬r ∨ x ∨ z)

require the output r to be 1, and simplify:

(¬v ∨ a) ∧ (¬v ∨ b) ∧ (¬a ∨ ¬b ∨ v)
∧ (c ∨ w) ∧ (¬w ∨ ¬c)
∧ (v ∨ x) ∧ (¬x ∨ ¬v)
∧ (¬v ∨ y) ∧ (¬w ∨ y) ∧ (¬y ∨ v ∨ w)

∧ (y ∨ z) ∧ (¬z ∨ ¬y)
∧ (¬x ∨ 1) ∧ (¬z ∨ 1) ∧ (¬1 ∨ x ∨ z)

= (¬v ∨ a) ∧ (¬v ∨ b) ∧ (¬a ∨ ¬b ∨ v)
∧ (c ∨ w) ∧ (¬w ∨ ¬c)
∧ (v ∨ x) ∧ (¬x ∨ ¬v)
∧ (¬v ∨ y) ∧ (¬w ∨ y) ∧ (¬y ∨ v ∨ w)

∧ (y ∨ z) ∧ (¬z ∨ ¬y)
∧ 1 ∧ 1 ∧ (0 ∨ x ∨ z)

= (¬v ∨ a) ∧ (¬v ∨ b) ∧ (¬a ∨ ¬b ∨ v)
∧ (c ∨ w) ∧ (¬w ∨ ¬c)
∧ (v ∨ x) ∧ (¬x ∨ ¬v)
∧ (¬v ∨ y) ∧ (¬w ∨ y) ∧ (¬y ∨ v ∨ w)

∧ (y ∨ z) ∧ (¬z ∨ ¬y)
∧ (x ∨ z)

22

226 Chapter 22 · Efficient CNF Conversion

we get an expression in CNF that is satisfiable iff there are values of the inputs
a, b, c thatmake the circuit produce 1.That is, this expressionand the expression
¬(a∧b)∨¬((a∧b)∨¬c) are equisatisfiable, with any solution to the transformed
expression corresponding to a solution to the original expression and vice versa.

What we have just done is called the Tseytin transformation. The result itTseytin is pronounced “tsaytin”. The
Tseytin transformation is due to the
Russian computer scientist and
mathematician Grigory Samuilovich
Tseytin (1936−), see 7 https://www.
math.spbu.ru/user/tseytin/

produces for this small example, which contains 13 clauses, is not impressive at
all: applying Boolean algebra to ¬(a∧ b)∨¬((a∧ b)∨¬c) gives the equivalent
CNF expression

¬a∨ ¬b

which contains only 1 clause.
The Tseytin transformation produces more useful results when it is applied

to larger examples. Consider the following circuit:

which is equivalent to the expression

(a∧b)∨(c∧d)∨(e∧f)∨(g∧h)∨(i∧j)∨(k∧l)

Converting that expression to CNF using Boolean algebra gives an expression
with 64 clauses, each containing 6 literals. Using the Tseytin transformation,
we start by labelling the internal wires:

Writing down the list of equivalences and their corresponding CNF represen-
tations gives:

u ↔ a ∧ b : (¬u ∨ a) ∧ (¬u ∨ b) ∧ (¬a ∨ ¬b ∨ u)
v ↔ c ∧ d : (¬v ∨ c) ∧ (¬v ∨ d) ∧ (¬c ∨ ¬d ∨ v)
w ↔ e ∧ f : (¬w ∨ e) ∧ (¬w ∨ f) ∧ (¬e ∨ ¬f ∨ w)

x ↔ g ∧ h : (¬x ∨ g) ∧ (¬x ∨ h) ∧ (¬g ∨ ¬h ∨ x)

y ↔ i ∧ j : (¬y ∨ i) ∧ (¬y ∨ j) ∧ (¬i ∨ ¬j ∨ y)
z ↔ k ∧ l : (¬z ∨ k) ∧ (¬z ∨ l) ∧ (¬k ∨ ¬l ∨ z)
m ↔ u ∨ v : (¬u ∨ m) ∧ (¬v ∨ m) ∧ (¬m ∨ u ∨ v)
n ↔ m ∨ w : (¬m ∨ n) ∧ (¬w ∨ n) ∧ (¬n ∨ m ∨ w)

o ↔ n ∨ x : (¬n ∨ o) ∧ (¬x ∨ o) ∧ (¬o ∨ n ∨ x)

p ↔ o ∨ y : (¬o ∨ p) ∧ (¬y ∨ p) ∧ (¬p ∨ o ∨ y)
r ↔ p ∨ z : (¬p ∨ r) ∧ (¬z ∨ r) ∧ (¬r ∨ p ∨ z)

Taking the conjunction of these, setting r to 1 and simplifying gives the result:

https://www.math.spbu.ru/user/tseytin/
https://www.math.spbu.ru/user/tseytin/

Tseytin on Expressions
227 22

(¬u ∨ a) ∧ (¬u ∨ b) ∧ (¬a ∨ ¬b ∨ u)
∧ (¬v ∨ c) ∧ (¬v ∨ d) ∧ (¬c ∨ ¬d ∨ v)
∧ (¬w ∨ e) ∧ (¬w ∨ f) ∧ (¬e ∨ ¬f ∨ w)

∧ (¬x ∨ g) ∧ (¬x ∨ h) ∧ (¬g ∨ ¬h ∨ x)

∧ (¬y ∨ i) ∧ (¬y ∨ j) ∧ (¬i ∨ ¬j ∨ y)
∧ (¬z ∨ k) ∧ (¬z ∨ l) ∧ (¬k ∨ ¬l ∨ z)
∧ (¬u ∨ m) ∧ (¬v ∨ m) ∧ (¬m ∨ u ∨ v)
∧ (¬m ∨ n) ∧ (¬w ∨ n) ∧ (¬n ∨ m ∨ w)

∧ (¬n ∨ o) ∧ (¬x ∨ o) ∧ (¬o ∨ n ∨ x)

∧ (¬o ∨ p) ∧ (¬y ∨ p) ∧ (¬p ∨ o ∨ y)
∧ (p ∨ z)

which is 31 clauses, each containing 2 to 3 literals.
As we saw earlier, converting an expression of size n to CNF will produce

an expression with 2n clauses in the worst case. In contrast, the Tseytin trans-
formation produces a CNF expression with at most 4n clauses, each containing

The limit is 3n clauses for circuits
containing just AND, OR, and
NOT gates, but each XOR gate
requires 4 clauses.

2 to 3 literals. Real-life circuits are built from thousands of gates, so the size
difference between these CNF expressions can be enormous.

Tseytin on Expressions

Applying the Tseytin transformation to logical expressions is very similar to
applying it to circuits composed of logic gates. The first difference is that we
need CNF equivalents for the remaining connectives, and—these are easy—for
0 and 1:

r ↔ (s → t) : (r ∨ s) ∧ (r ∨ ¬t) ∧ (¬r ∨ ¬s ∨ t)
r ↔ (s ↔ t) : (r ∨ s ∨ t) ∧ (r ∨ ¬s ∨ ¬t) ∧ (¬r ∨ s ∨ ¬t) ∧ (¬r ∨ ¬s ∨ t)

r ↔ 0 : ¬r
r ↔ 1 : r

Second, there are no wires in logical expressions so we can’t label them.
Instead, we label the sub-expressions. This is best understood by looking at an
example.

Let’s consider the expression

a ↔ ((b∨ c) → (a∧d))

We start with the innermost sub-expressions, b∨ c and a∧d . Taking first b∨ c,
we introduce a new variable x1, assert that it is equivalent to b ∨ c:

x1 ↔ (b∨ c)

and then replace b ∨ c in the original expression by x1:

a ↔ (x1 → (a∧ d))

Attacking a ∧ d next, we introduce x2, assert that it is equivalent to a ∧ d :

x2 ↔ (a∧ d)

and replace a ∧ d by x2:

a ↔ (x1 → x2)

The innermost sub-expression is now x1 → x2. We introduce x3, assert that it
is equivalent to x1 → x2:

22

228 Chapter 22 · Efficient CNF Conversion

x3 ↔ (x1 → x2)

and replace x1 → x2 by x3:

a ↔ x3

That leaves just one sub-expression, the expression a ↔ x3 itself. We introduce
x4 with

x4 ↔ (a ↔ x3)

which reduces our expression to the variable

x4

Now we convert each of the equivalences to CNF:

x1 ↔ (b ∨ c) : (¬b ∨ x1) ∧ (¬c ∨ x1) ∧ (¬x1 ∨ b ∨ c)
x2 ↔ (a ∧ d) : (¬x2 ∨ a) ∧ (¬x2 ∨ d) ∧ (¬a ∨ ¬d ∨ x2)
x3 ↔ (x1 → x2) : (x3 ∨ x1) ∧ (x3 ∨ ¬x2) ∧ (¬x3 ∨ ¬x1 ∨ x2)
x4 ↔ (a ↔ x3) : (x4 ∨ a ∨ x3) ∧ (x4 ∨ ¬a ∨ ¬x3) ∧ (¬x4 ∨ a ∨ ¬x3)

∧ (¬x4 ∨ ¬a ∨ x3)

Taking the conjunction of these, setting the final variablex4 to 1 and simplifying
gives the final result:

I
�, a � a,�

� � a,�
¬L

�,¬a � �

�, a � �

¬R
� � ¬a, �

�, a, b � �

∧L
�, a ∧ b � �

� � a, � � � b, �
∧R

� � a ∧ b, �

�, a � � �, b � �

∨L
�, a ∨ b � �

� � a, b, �
∨R

� � a ∨ b, �

� � a,� �, b � �

→L
�, a → b � �

�, a � b, �
→R

� � a → b, �

�, a → b, b → a � �

↔L
�, a ↔ b � �

� � a → b, � � � b → a,�
↔R

� � a ↔ b, �

The sequent calculus with → and ↔

(¬b ∨ x1) ∧ (¬c ∨ x1) ∧ (¬x1 ∨ b ∨ c)
∧ (¬x2 ∨ a) ∧ (¬x2 ∨ d) ∧ (¬a ∨ ¬d ∨ x2)
∧ (x3 ∨ x1) ∧ (x3 ∨ ¬x2) ∧ (¬x3 ∨ ¬x1 ∨ x2)
∧ (x4 ∨ a ∨ x3) ∧ (x4 ∨ ¬a ∨ ¬x3) ∧ (¬x4 ∨ a ∨ ¬x3) ∧ (¬x4 ∨ ¬a ∨ x3)

= (¬b ∨ x1) ∧ (¬c ∨ x1) ∧ (¬x1 ∨ b ∨ c)
∧ (¬x2 ∨ a) ∧ (¬x2 ∨ d) ∧ (¬a ∨ ¬d ∨ x2)
∧ (x3 ∨ x1) ∧ (x3 ∨ ¬x2) ∧ (¬x3 ∨ ¬x1 ∨ x2)
∧ (1 ∨ a ∨ x3) ∧ (1 ∨ ¬a ∨ ¬x3) ∧ (¬1 ∨ a ∨ ¬x3) ∧ (¬1 ∨ ¬a ∨ x3)

= (¬b ∨ x1) ∧ (¬c ∨ x1) ∧ (¬x1 ∨ b ∨ c)
∧ (¬x2 ∨ a) ∧ (¬x2 ∨ d) ∧ (¬a ∨ ¬d ∨ x2)
∧ (x3 ∨ x1) ∧ (x3 ∨ ¬x2) ∧ (¬x3 ∨ ¬x1 ∨ x2)
∧ (a ∨ ¬x3) ∧ (¬a ∨ x3)

Exercises

1. Prove that the rules for implication (→L, →R) and bi-implication (↔L,
↔R) are sound.

2. Prove that a → (b ∨ c) � ((b → ¬a) ∧ ¬c) → ¬a is universally valid.

Exercises
229 22

3. Use the laws of Boolean algebra on page 222 to convert the follow expres-
sions to CNF.

(a) isBlack ∨ isSmall ↔ ¬ isDisc
(b) r ↔ (s → t)
(c) r ↔ (s ↔ t)

Check that the results for (b) and (c) correspond to their CNF equivalents
given earlier:

r ↔ (s → t) : (r ∨ s) ∧ (r ∨ ¬t) ∧ (¬r ∨ ¬s ∨ t)
r ↔ (s ↔ t) : (r ∨ s ∨ t) ∧ (r ∨ ¬s ∨ ¬t) ∧ (¬r ∨ s ∨ ¬t) ∧ (¬r ∨ ¬s ∨ t)

4. Implement conversion to CNF using the laws of Boolean algebra as a
Haskell function toCNF :: Prop -> Form Name.
Hint: Phase 2 is toNNF :: Prop -> Prop in Exercise 16.5.

5. Define a version of evalProp on page 221 that interprets propositions as
predicates rather than as Boolean values. Its type should be

evalProp :: PredValn u -> Prop -> Predicate u

where variables are given predicates as values using the following type of
valuations:

type PredValn u = Name -> Predicate u

Hint: The right-hand sides of the equations defining evalProp on page 221
refer to functions on Boolean values like

(&&) :: Bool -> Bool -> Bool

Youwill need to replace thesewith functionsonpredicates like (seepage120)

(&:&) :: Predicate u -> Predicate u -> Predicate u

6. Consider the following circuit:

(a) Give an equivalent logical expression.
(b) Apply theTseytin transformation togive an equisatisfiableCNFexpres-

sion.

7. Apply the Tseytin transformation to the expression

(¬a∨c)∧ (b → ((a∨c) ↔ d))

to give an equisatisfiable CNF expression.

https://doi.org/10.1007/978-3-030-76908-6_16
https://doi.org/10.1007/978-3-030-76908-6_16

231 23

Counting Satisfying Valuations

Contents

2-SAT – 232

Implication and Order – 232

The Arrow Rule – 234

Complementary Literals – 238

Implication Diagrams with Cycles – 241

Exercises – 245

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_23

23

232 Chapter 23 · Counting Satisfying Valuations

2-SAT

We’re now going to look into a special case of CNF expressions: those with
clauses containing no more than two literals each. Surprisingly, there’s a dra-
matic efficiency difference between satisfiability checking in this case and when
the limit is increased, even to just three literals per clause.

Here’s an example:

(¬A∨¬C)∧(¬B∨C)∧(B∨A)∧(¬C∨D)∧(¬D∨¬B)

This corresponds to the following set of rules about allowed course combina-
tions, where A stands for Archaeology and so on:

1. You may not take both Archaeology and Chemistry: ¬(A ∧ C), which is
equivalent to ¬A ∨ ¬C.

2. If you take Biology you must take Chemistry: B → C, which is equivalent
to ¬B ∨ C.

3. You must take Biology or Archaeology: B ∨ A.
4. If you take Chemistry you must take Divinity: C → D, which is equivalent

to ¬C ∨ D.
5. Youmay not take bothDivinity and Biology:¬(D∧B), which is equivalent

to ¬D ∨ ¬B.

Confronted with this set of rules, you might want to know whether you are
allowed to take both Archaeology and Divinity or not. You will be able to
easily work out the answer (yes, that combination is allowed, provided you
take neither Biology nor Chemistry) using a method called the arrow rule. And
you’ll be able to count the number of course combinations, out of the 24 = 16
possible combinations of values of A,B,C,D, that the rules allow.

A permitted course combination is a valuation that satisfies the above CNF
expression. So finding out whether there is a permitted course combination or
not—that is, checking that the above set of rules isn’t inconsistent—is the same
as the satisfiability problem that we studied back in Chap. 19. The problem
of checking the satisfiability of CNF expressions built from clauses containingThe restriction of CNF to clauses

containing no more than two
literals is called 2-CNF. See
7 https://en.wikipedia.org/wiki/2-
satisfiability for more on 2-CNF
and 2-SAT.

no more than two literals each is called 2-SAT. It’s an interesting special case
because it can always be solved in linear time, while 3-SAT is NP-complete,
like the general case, with the best-known algorithms taking exponential time
in the worst case.

Implication and Order

Because a → b is equivalent to ¬a ∨ b, any clause of a CNF expression con-
taining two literals

L1 ∨L2

is equivalent to an implicationThe same holds for a clause
consisting of a single literal L: it’s
equivalent to the implication 1 → L. ¬L1 → L2

The above CNF expression

(¬A∨¬C)∧(¬B∨C)∧(B∨A)∧(¬C∨D)∧(¬D∨¬B)

is therefore equivalent to the following conjunction of implications:

(A → ¬C)∧(B → C)∧(¬B → A)∧(C → D)∧(D → ¬B)

https://en.wikipedia.org/wiki/2-satisfiability
https://en.wikipedia.org/wiki/2-satisfiability

Implication and Order
233 23

Let’s pick out three of those implications:

C → D D → ¬B ¬B → A

We can add 0 → C at the beginning, and A → 1 at the end—both are true, no
matter what the values of C and A are—and then write them as a chain of five
implications:

0 → C → D → ¬B → A → 1

Now, recalling that a → b is equivalent to a ≤ b, we get

0 ≤ C ≤ D ≤ ¬B ≤ A ≤ 1

This relationship between the values of C, D, ¬B and A is very interesting.
Because there are only two possible values for each literal, 0 and 1, it says that
only the following five combinations of values are possible:

C = 0 D = 0 ¬B = 0 A = 0

C = 0 D = 0 ¬B = 0 A = 1

C = 0 D = 0 ¬B = 1 A = 1

C = 0 D = 1 ¬B = 1 A = 1

C = 1 D = 1 ¬B = 1 A = 1

(Of course, ¬B = 0 means that B = 1, and ¬B = 1 means that B = 0.)
If we make the chain of implications into a diagram where all of the impli-

cations point upwards:

then each of these combinations corresponds to a horizontal “cut” through the
chain, where all of the literals above the cut get value 1 and all of the literals
below the cut get value 0:

23

234 Chapter 23 · Counting Satisfying Valuations

You can’t cut above the 1, because it has value 1, obviously, and you can’t
cut below the 0.

There are two remaining implications in the list corresponding to our orig-
inal CNF expression:

A → ¬C B → C

Some of the above combinations of values don’t satisfy these two implications,
and it’s easy to pick them out. We’ll see later how to take them into account atA → ¬C eliminates the last one in

the list and B → C eliminates the
first two.

the same time as the implications in the chain.

The Arrow Rule

What you’ve just seen in action is called the arrow rule.Given a chain of upward-
pointing implications, starting with 0 and ending with 1, cuts through the chain
divide literals that get value 1 (above) from literals that get value 0 (below). Each
cut corresponds to one combination of values for the literals, so the number of
cuts gives the number of combinations.

It’s important for now that each literal only appears once in the chain, and
that there are no complementary literals (the same atom both with and without
negation). We’ll be able to deal with both of these cases, but let’s keep things
simple to start with.

Let’s look at an example that isn’t just a simple chain of implications. We
start with the CNF expression

(¬R∨Q)∧ (¬R∨S)

which is equivalent to the implications

(R → Q)∧ (R → S)

This gives the following diagram of upward-pointing implications, with impli-
cations to 1 added at the top and an implication from 0 added at the bottom.
In this case, the implications don’t form a linear chain:

which corresponds to the inequalities:

0 ≤ R
Q≤ ≤

≤ ≤S
1

Now there are five ways to cut through this diagram horizontally:

The Arrow Rule
235 23

Each of these cuts corresponds to a combination of values for literals that
respects the inequalities. They are:

top horizontal cut: R = 0 Q = 0 S = 0
cut sloping upwards: R = 0 Q = 1 S = 0
cut sloping downwards: R = 0 Q = 0 S = 1
middle horizontal cut: R = 0 Q = 1 S = 1
bottom horizontal cut: R = 1 Q = 1 S = 1

If you just want to count the combinations, rather than list them, you could
reason as follows:

• For the cuts across the diamond, there are two ways of starting the cut
(above or below Q) and two ways of ending the cut (above or below S),
giving 2 × 2 = 4 combinations.

• The cut below the diamond adds 1 combination.

This gives 4 + 1 = 5 combinations.
Here’s another example that’s a little more complicated. We start with the

CNF expression

(¬A∨B)∧(¬B∨C)∧(¬C∨D)∧(¬A∨E)∧(¬E∨D)

which is equivalent to the implications

(A → B)∧(B → C)∧(C → D)∧(A → E)∧(E → D)

This gives the following diagram of upward-pointing implications. Again, the
implications don’t form a linear chain:

There are eight ways to cut through this diagram horizontally:

23

236 Chapter 23 · Counting Satisfying Valuations

Again, we can count these without drawing them all by reasoning as follows:

• For the cuts across the pentagon, there are three ways of starting the cut
(above C, above B, above A) and two ways of ending the cut (above or
below E), giving 3 × 2 = 6 combinations.

• The cut above the pentagon adds 1 combination, and the cut below the
pentagon adds another combination.

This gives 6 + 1 + 1 = 8 cuts, i.e. 8 combinations of values for literals that
satisfy the CNF expression.

Finally, here’s an even more complicated example. We start with the CNF
expression

(B∨¬A)∧(B∨C)∧(¬C∨D)∧(A∨E)∧(¬E∨D)∧(A∨¬F)

which is equivalent to the implications

(¬B → ¬A)∧(¬B → C)∧(C → D)∧(¬A → E)∧(E → D)∧(¬A → ¬F)

This gives the following diagram of upward-pointing implications:

The Arrow Rule
237 23

This is complicated enough that we need tomake some notes on the diagram
in order to work out the number of cuts, rather than trying to draw them. We
start by indicating the number of ways of starting cuts on the left:

The next step is to indicate the number of ways of continuing cuts through
the right-hand side of the upper triangle:

There are two ways of continuing the cut between D and 1: one from the
cut that starts between ¬F and 1, and one from the cut that starts between ¬A
and ¬F . Similarly, there are two ways of continuing the cut between E and D,
and likewise between ¬A and E.

Finally, we indicate the number of ways of finishing cuts through the right-
hand side of the lower triangle:

23

238 Chapter 23 · Counting Satisfying Valuations

There are 2 + 2 + 1 = 5 ways of finishing the cut between C and D, and
2 + 2 + 1 = 5 ways of finishing the cut between ¬B and C.

Adding up the numbers on the right-hand side of the diagram gives 2+ 5+Doing the calculation from right to
left gives the same result. (Check it!) 5+ 1 = 13 cuts, i.e. 13 combinations of values for literals that satisfy the CNF

expression.

Complementary Literals

Now that you’ve had some practice with the arrow rule, it’s time to consider
what happens when the diagram includes complementary literals.

Here’s an example that is a modification of one of the ones above. We start
with the CNF expression

(¬A∨B)∧(¬B∨C)∧(¬C∨D)∧(¬A∨¬B)∧(B∨D)

which is equivalent to the implications

(A → B)∧(B → C)∧(C → D)∧(A → ¬B)∧(¬B → D)

This gives the following diagram of upward-pointing implications:

which includes the complementary literals B and ¬B.
In the earlier version of this example, which involved a diagram with the

same shape, there were eight ways to cut through the diagram, giving rise to
eight combinations of values for literals that satisfy the CNF expression. We
can draw the same set of eight cuts through this diagram, but some of them are
invalid. Why?

What makes some of the cuts invalid is the fact that complementary literals
can’t have the same value. Either B = 0 and ¬B = 1, or B = 1 and ¬B = 0. It

Complementary Literals
239 23

follows that any cut that doesn’t separate B from ¬B is invalid, since it would
assign either 0 or 1 to both literals. There are five invalid cuts in this case:

which leaves three valid ones:

We can count the cuts by annotating the diagram:

The numbers on the right-hand side of the diagram take into account the
requirement for cuts to separate B and ¬B. For example, the annotation on
the arrow between A and ¬B is 2 because the cuts starting above and below
C that cross this arrow will separate B and ¬B, but the one starting below B
won’t. Adding up the numbers on the right-hand side gives 0 + 1 + 2 + 0 = 3
combinations of values for literals that satisfy the CNF expression.

When possible, you should eliminate complementary literals by considering
the contrapositive of one or more of the implications. Here’s a variation on
another example above. Consider the CNF expression

(B∨¬A)∧(B∨C)∧(¬C∨D)∧(A∨E)∧(¬E∨D)∧(A∨¬F)∧(G∨¬C)

23

240 Chapter 23 · Counting Satisfying Valuations

which is equivalent to the implications

(¬B → ¬A)∧ (¬B → C)∧ (C → D)∧ (¬A → E)∧ (E → D)∧ (¬A → ¬F)∧ (¬G → ¬C)

The first six implications give the diagramof upward-pointing implications that
we had earlier:

but what do we do with ¬G → ¬C? The literal C is already present, so adding
¬G → ¬C to the diagram would add a complementary literal. But ¬G isn’t
there, so where do we put it? One possibility would be the following:

But a simpler solution, without complementary literals, is to instead use the
contrapositive C → G of ¬G → ¬C. This gives the following diagram:

which can be annotated as follows:

Implication Diagrams with Cycles
241 23

to work out that there are 7+7+5+1 = 20 combinations of values for literals
that satisfy the CNF expression.

Implication Diagrams with Cycles

Sometimes it is difficult or impossible to draw a diagram of upward-pointing
implications that captures the entire CNF expression. An example is our first
example of permitted course combinations, where the implications were

(A → ¬C)∧(B → C)∧(¬B → A)∧(C → D)∧(D → ¬B)

and our initial analysis considered just the three implications

(C → D)∧(D → ¬B)∧(¬B → A)

Adding in the implication A → ¬C gives the diagram

which contains the complementary literals C and ¬C, but we now know how
to deal with those. But what about B → C?

We have two choices. One is to add it to the bottom of the diagram, giving
a linear chain with two pairs of complementary literals. Then the permissible
cuts are the two that separate both of the pairs:

23

242 Chapter 23 · Counting Satisfying Valuations

The other choice is to take its contrapositive, ¬C → ¬B. But adding that
implication to the diagram gives a cycle:

Now, the cycle corresponds to the inequalities

¬B ≤ A ≤ ¬C ≤ ¬B

for which the only solutions give all these literals the same value:

¬B = 0 A = 0 ¬C = 0

¬B = 1 A = 1 ¬C = 1

The same holds for any implication diagram containing a cycle: all literals in
the cycle need to be given the same value. The permissible cuts are the two that
separate the complementary literals C and ¬C, and that don’t cut through the
cycle:

Implication Diagrams with Cycles
243 23

Let’s look at another example that contains a cycle. We start with the CNF
expression

(¬A∨B)∧(¬B∨C)∧(¬C∨¬A)∧(A∨D)∧(¬D∨A)

which is equivalent to the implications

(A → B)∧(B → C)∧(C → ¬A)∧(¬A → D)∧(D → A)

The closest we can get to a diagram of upward-pointing implications is the Replacing one or more implications
with their contrapositives doesn’t
help. (Try it!)

following:

All of the literals in the cycle need to be given the same value. On the other hand,
the cycle includes the complementary literalsA and¬A, which need to be given
different values. So this example is unsatisfiable: there is no combination of
values for literals that satisfies the CNF expression.

In some complex examples, it is difficult to draw a diagram of upward-
pointing implications that capture all of the clauses.As a final example, consider
the CNF expression

(¬A∨B)∧(¬C∨B)∧(¬A∨E)∧(¬C∨D)∧(¬D∨E)

which is equivalent to the implications

(A → B)∧(C → B)∧(A → E)∧(C → D)∧(D → E)

This gives the following non-planar diagram of upward-pointing implications:

23

244 Chapter 23 · Counting Satisfying Valuations

It’s difficult to use such a diagram for counting cuts.
A trick that can be applied in such cases is to split the problem into two

cases, treat them separately, and then combine the results.
Let’s first consider the case where A = 1. Because A → B and A → E, it

follows that B = 1 and E = 1. This leaves the following simpler diagram, with
the three possible cuts indicated:

Now we consider the case where A = 0. We can’t conclude anything about
the values of the other literals from that, but nevertheless, it leaves a simpler
diagram with 2 + 2 + 2 + 1 = 7 possible cuts as indicated by the annotations:

This gives a total of 3+7 = 10 combinations of values for literals that satisfy
the CNF expression.

Exercises
245 23

Exercises

1. Use the Haskell implementation of DPLL in Chap. 19, and/or a modifica-
tion to satisfiable :: Prop -> Bool from Chap. 16 that counts satisfying
valuations instead of checking for their existence, to check that the solutions
given for all of the examples in this chapter are correct.

2. Annotate the following implication diagram to work out how many cuts
that separate the complementary literals C and ¬C are possible. Compare
with the result obtained above for the diagram that uses the contrapositive
of ¬G → ¬C.

3. Use the arrow rule to count the number of combinations of values for literals
that satisfy the following CNF expressions over the atoms A, B, C, D, E,
F , G, H :

(a) E ∨ F
(b) (E ∨ F) ∧ (¬A ∨ B) ∧ C
(c) (¬A ∨ B) ∧ (¬B ∨ C) ∧ (¬D ∨ F) ∧ (¬E ∨ F) ∧ (¬F ∨ D)

(d) (¬A ∨ B) ∧ (¬C ∨ B) ∧ (¬D ∨ E) ∧ (¬E ∨ F) ∧ (¬F ∨ C)

What do you need to do to the result of the calculation using the arrow rule
to take account of atoms that aren’t used in the expression?

4. Use the arrow rule to count the number of combinations of values for literals
that satisfy the following CNF expressions:

(a) (¬A ∨ B) ∧ (¬B ∨ C) ∧ (¬C ∨ B)
(b) (¬A ∨ B) ∧ (¬B ∨ C) ∧ (¬D ∨ ¬A) ∧ (¬E ∨ ¬A) ∧ (A ∨ C)

(c) (¬A ∨ B) ∧ (¬B ∨ C) ∧ (¬C ∨ D) ∧ (¬D ∨ ¬B) ∧ (¬A ∨ F) ∧ (¬F ∨
G) ∧ (¬G ∨ H) ∧ (¬H ∨ ¬B) ∧ (¬B ∨ H) ∧ (C ∨ ¬D)

5. Use the arrow rule to count the number of combinations of values for literals
that satisfy the following CNF expression:

(A∨B)∧(¬B∨¬C)∧(¬C∨D)∧(¬A∨¬E)∧(¬E∨D)

247 24

Type Classes

Contents

Bundling Types with Functions – 248

Declaring Instances of Type Classes – 248

Defining Type Classes – 250

Numeric Type Classes – 253

Functors – 254

Type Classes are Syntactic Sugar – 256

Exercises – 257

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_24

24

248 Chapter 24 · Type Classes

Bundling Types with Functions

You’ve seen that there are some common functions, like == and show, that are
available for many but not all types. For instance, neither == nor show will
work on function types. The type of a polymorphic function can require that it
be applied only on types that have such functions, and these requirements can
be inferred automatically. An example is the definition of list membership:

x `elem` [] = False
x `elem` (y:ys) = x==y || x `elem` ys

Because of the way that == is used in the definition, the Haskell typechecker
infers the type

elem :: Eq a => a -> [a] -> Bool

which says that elem will work on any type that supports equality testing.
You’ve also seen that == and show will be defined automatically for newly

defined algebraic data types if the right magic words are added to the type
definition. For example, once we define

data Season = Winter | Spring | Summer | Fall
deriving (Eq,Show)

the functions == and show will work on values of type Season. But there are
some subtleties. If we define:

data Maybe a = Nothing | Just a
deriving (Eq,Show)

and T is a type, then == and show will work on values of type Maybe T , but
only provided == and show work on type T .

Eq and Show are examples of type classes. Each type class provides one or
more named functions over each type that belongs to the class. The type class
Show provides show, while Eq provides the equality test == and its negation /=.
A type can be declared as an instance of a type class by defining the functions
that are required for types that belong to that class. This can be done explicitly,
as you’ll see below, or as part of an algebraic data type definition where the
function definitions follow a general scheme. And as well as defining a type as
an instance of an existing type class like Show, you can define your own type
classes.

Type classes can be regarded as collections of types that are related in the
sense that they all have the functions of the class. Alternatively, they can be
regarded as a way of bundling functions together with a type, to make it more
than a name for a collection of values: if a function of a type class is required
for a type, and the type has been declared as an instance of that type class, then
the required function is available.

Notice that there are two different situations in which a function might
have more than one type in Haskell. The first is a function with a polymorphic
type, which has a single definition that works for any instance of that type. An
example is map :: (a -> b) -> [a] -> [b]. The second is a function belonging
to a type class, where each type that is an instance of that type class definesThese are often called overloaded

functions, see 7 https://en.wikipedia.
org/wiki/Function_overloading.
Another name for this is ad hoc
polymorphism, in contrast with
parametric polymorphism as in map.

the function for that type separately. An example is show :: T -> String for a
type T , where converting a Bool to a String is quite different from converting
an Int to a String.

Declaring Instances of Type Classes

Declaring that a type is an instance of a type class requires a definition for
each of the functions in the type class. You’ve already seen some examples for

https://en.wikipedia.org/wiki/Function_overloading
https://en.wikipedia.org/wiki/Function_overloading

Declaring Instances of Type Classes
249 24

the type class Show, and that declaring T as an instance of Show requires the
definition of a function show :: T -> String. Here are some examples for the
type class Eq, which is defined like so:

This is a simplified version—see
page 250 for the full definition.

class Eq a where
(==) :: a -> a -> Bool

This says that declaring T to be an instance of Eq requires the definition of a
function (==) :: T -> T -> Bool.

Equality for Char is defined in terms of the function ord :: Char -> Int
from the Data.Char library module, which converts a character to its numeric
code:

instance Eq Char where
x == y = ord x == ord y

This relies on the fact that Int is an instance of Eq to provide the equality test
in ord x == ord y.

The definition of equality for pairs depends on equality being available for
the types of both components. The instance declaration for (a,b) is therefore
conditional on Eq a and Eq b:

instance (Eq a, Eq b) => Eq (a,b) where
(u,v) == (x,y) = (u == x) && (v == y)

The declaration that [a] is an instance of Eq, which is conditional on Eq a,
involves a recursive definition:

Notice that the two occurrences of
== on the right-hand side refer to two
different instances of equality, on
type a and (recursively) type [a]
respectively.

instance Eq a => Eq [a] where
[] == [] = True
[] == y:ys = False
x:xs == [] = False
x:xs == y:ys = (x == y) && (xs == ys)

In general, the definitions of functions in type class instances can be as
complicated as you like.

A function == for testing equality should be reflexive (x == x), symmetric (if
x == y then y ==x) and transitive (ifx == y and y == z thenx == z).Unfortunately,
there is no way for Haskell to enforce such restrictions when you declare an
instance of Eq or any other type class. Only the type matters. But provided each
new instance of Eq is checked for these properties, users of == can assume that
they hold.

You’ve seen examples of instances for Eq and Show being declared for
newly defined algebraic data types using deriving. For polymorphic types
like Maybe a above, the declaration is conditional on Eq a and Show a. The use
of deriving is limited to those two built-in type classes, plus a few others. These
include Ord and Enum, whichwill be covered later. The following example, based
on the algebraic data type for arithmetic expressions in Chap. 16, demonstrates
deriving for the type class Read:

data Exp = Lit Int
| Add Exp Exp
| Mul Exp Exp

deriving Read

Including “deriving Read” declares Exp to be an instance of Read, with a
function read for obtaining a value of type Exp from a String:

See page 144 for the definition of
showExp and page 145 for evalExp.

> showExp (read "Add (Lit 3) (Mul (Lit 7) (Lit 2))")
"(3 + (7 * 2))"
> evalExp (read "Add (Lit 3) (Mul (Lit 7) (Lit 2))")
17

24

250 Chapter 24 · Type Classes

Of course, you can define an algebraic data type to be an instance of a type
class using a function definition that is different from the one that would be
generated automatically from the type definition. For instance, for

data Set = MkSet [Int]

in our abstract data type AbstractSetAsList (page 214), in which sets are
represented as unordered lists, we could declare:

This instance declaration would
need to be inside the module
AbstractSetAsList since it requires
access to MkSet.

instance Eq Set where
MkSet ms == MkSet ns = ms `subset` ns && ns `subset` ms

where ms `subset` ns = and [m `elem` ns | m <- ms]

which defines == to be the correct notion of equality on sets:

> MkSet [1,2] == MkSet [2,1]
True

This is in contrast to:

data Set = MkSet [Int] deriving Eq

which would define == on sets to inappropriately take account of the order of
the items in the underlying list:

> MkSet [1,2] == MkSet [2,1]
False

Defining Type Classes

You don’t have to stick to Haskell’s built-in type classes: you can also define
your own. To see how this works, let’s look into how some of the built-in type
classes are defined.

The type class Show just requires a function called show that converts a
value to a string. Here is how it could have been defined, if it weren’t already in
Haskell:

class Show a where
show :: a -> String

The type class Eq actually requires two functions, == and /=. But to declare
a type to be an instance of Eq, you only need to define one of them, because the
type class definition includes a default definition for /= in terms of ==, and for
== in terms of /=:

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
-- defaults
x /= y = not (x == y)
x == y = not (x /= y)

The Ord type class is for types whose values are ordered, with functions <,
>, etc. It involves six functions, with default definitions for all but <=:

class Eq a => Ord a where
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool
min :: a -> a -> a
max :: a -> a -> a

Defining Type Classes
251 24

-- defaults
x < y = x <= y && x /= y
x > y = y < x
x >= y = y <= x
min x y

| x <= y = x
| otherwise = y

max x y
| x <= y = y
| otherwise = x

The type class definition includes the requirement “Eq a =>”, which means that
in order for a type to be an instance of Ord, it needs to be an instance of Eq.
Because of this, we can view the class Ord as inheriting the functions of Eq, with The terminology type class, instance,

inheriting, etc. hints at a relationship
to these concepts in class-based
programming languages like Java, see
7 https://en.wikipedia.org/wiki/
Class-based_programming. But the
differences in what those words mean
in functional programming versus
class-based programming make it
important not to confuse them.

the default definitions making use of /=.
Algebraic data types can be declared as instances of Ord using deriving.

The definition of <= that is generated is best illustrated through few examples.
First is the built-in type Bool, which was introduced as an algebraic data type
on page 132:

data Bool = False | True
deriving (Eq,Show,Ord)

The order in which the constructors False and True appear in the definition of
Bool determines the order that arises from “deriving (Eq,Show,Ord)”, giving
the following:

instance Ord Bool where
False <= False = True
False <= True = True
True <= False = False
True <= True = True

When the constructors take parameters, the parameter types are required to
be instances of Ord. Then, after first taking the order in which the constructors
appear in the definition into account, the definition of <= takes account of
the orders on the parameter types. For example, taking the Maybe type from
page 138:

data Maybe a = Nothing | Just a
deriving (Eq,Show,Ord)

gives the following definition:

instance Ord a => Ord (Maybe a) where
Nothing <= Nothing = True
Nothing <= Just x = True
Just x <= Nothing = False
Just x <= Just y = x <= y

If a constructor has multiple parameters, the order in which the parameters
appear is also taken into account in the definition of <=. This can be seen in the
Pair type from page 136:

data Pair a b = Pair a b
deriving (Eq,Show,Ord)

which gives:

instance (Ord a, Ord b) => Ord (Pair a b) where
Pair x y <= Pair x' y' = x < x' || (x == x' && y <= y')

so

https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Class-based_programming

24

252 Chapter 24 · Type Classes

> Pair 1 35 <= Pair 2 7 -- 1st components determine result
True
> Pair 1 35 <= Pair 1 7 -- 1st components equal, compare 2nd components
False

In this case, an explicit instance declaration for Ordwhich overrides the default
definition for < is more efficient because it avoids a repeated equality test:

instance (Ord a, Ord b) => Ord (Pair a b) where
Pair x y <= Pair x' y' = x < x' || (x == x' && y <= y')
Pair x y < Pair x' y' = x < x' || (x == x' && y < y')

Finally, an algebraic data type involving recursion gives rise to a recursive
definition of <=. For the List type from page 137:

data List a = Nil
| Cons a (List a)

deriving (Eq,Show,Ord)

we get:

instance Ord a => Ord (List a) where
Nil <= ys = True
Cons x xs <= Nil = False
Cons x xs <= Cons y ys = x < y || (x == y && xs <= ys)

For lists of length 2, this is the same as <= on pairs above:

> Cons 1 (Cons 35 Nil) <= Cons 2 (Cons 7 Nil)
True
> Cons 1 (Cons 35 Nil) <= Cons 1 (Cons 7 Nil)
False

For longer lists, it extends <= on pairs to give the familiar dictionary orderingThe technical term for this is
lexicographic order, see
7 https://en.wikipedia.org/wiki/
Lexicographic_order.

of words. Using the usual notation for strings as lists of characters in place of
Nil and Cons:

> "ashen" <= "asia" -- 'a'=='a', 's'=='s', 'h' <= 'i'
True
> "ash" <= "as" -- 'a'=='a', 's'=='s', "h" <= "" is False
False

The Enum type class is for types whose values form a sequence. The functions
it provides are the basis for Haskell’s notations for enumeration expressions:

, , etc. It works by providing functions between the type and
Int:

class Enum a where
toEnum :: Int -> a
fromEnum :: a -> Int
succ, pred :: a -> a
enumFrom :: a -> [a] -- [x ..]
enumFromTo :: a -> a -> [a] -- [x .. y]
enumFromThen :: a -> a -> [a] -- [x, y ..]
enumFromThenTo :: a -> a -> a -> [a] -- [x, y .. z]
-- defaults
succ x = toEnum (fromEnum x + 1)
pred x = toEnum (fromEnum x - 1)
enumFrom x

= map toEnum [fromEnum x ..]
enumFromTo x y

https://en.wikipedia.org/wiki/Lexicographic_order
https://en.wikipedia.org/wiki/Lexicographic_order

Numeric Type Classes
253 24

= map toEnum [fromEnum x .. fromEnum y]
enumFromThen x y

= map toEnum [fromEnum x, fromEnum y ..]
enumFromThenTo x y z

= map toEnum [fromEnum x, fromEnum y .. fromEnum z]

The functions toEnum and fromEnum are required, with the rest having default
definitions. Any instance should satisfy toEnum (fromEnum x) == x but there
is no way to enforce this requirement.

The type Season on page 133 can be declared as an instance of Enum, using
the functions toInt :: Season -> Int and fromInt :: Int -> Season defined
on that page or repeating their definitions as follows:

instance Enum Season where
toEnum 0 = Winter
toEnum 1 = Spring
toEnum 2 = Summer
toEnum 3 = Fall

fromEnum Winter = 0
fromEnum Spring = 1
fromEnum Summer = 2
fromEnum Fall = 3

The same can be done using deriving in the definition of Season, which
only applies to algebraic data types like Season in which all constructors take
no parameters:

data Season = Winter | Spring | Summer | Fall
deriving (Eq,Show,Enum)

The n constructors are numbered left to right from 0 to n− 1, giving the same
definitions of toEnum and fromEnum as above.

Either way, we get:

> [Spring .. Fall]
[Spring,Summer,Fall]
> [Fall, Summer ..]
[Fall,Summer,Spring,Winter]

and so on.

Numeric Type Classes

Haskell includes a rich collection of types for different kinds of numbers: fixed See Sect. 6.4 of 7 https://www.
haskell.org/onlinereport/haskell2010/
haskellch6.html for complete
documentation of Haskell’s numeric
types and numeric type classes.

size integers Int, arbitrary precision integers Integer, single- and double-
precision floating-pointnumbersFloatandDouble, rationalnumbersRational,
complex numbers Complex, etc. These are organised into a set of related type
classes, with numeric types supporting different operations being instances of
different type classes. The details can be looked up when you need them; this
is just a brief overview of some of the main points.

The simplest numeric type class, for all kinds of numbers, is Num:

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a
-- default
negate x = fromInteger 0 - x

https://www.haskell.org/onlinereport/haskell2010/haskellch6.html
https://www.haskell.org/onlinereport/haskell2010/haskellch6.html
https://www.haskell.org/onlinereport/haskell2010/haskellch6.html

24

254 Chapter 24 · Type Classes

The functions abs and signum should satisfy abs x * signum x == x.
All of the other numeric type classes—Real, Fractional, Floating,

Integral, etc.—inherit from Num. For example, Fractional is for numbers
that support division:

class Num a => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a
-- default
recip x = 1/x

while Floating supports logarithms, square roots, and trigonometry:

class Fractional a => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a
-- defaults
x ** y = exp (log x * y)
logBase x y = log y / log x
sqrt x = x ** 0.5
tan x = sin x / cos x
tanh x = sinh x / cosh x

Functors

Here’s another one of Haskell’s built-in type classes:

The concept of functor comes from
category theory, a branch of
Mathematics devoted to the study of
mathematical structure which has
applications in programming
language theory, see 7 https://en.
wikipedia.org/wiki/Category_theory.

class Functor t where
fmap :: (a -> b) -> t a -> t b

Before talking about what Functor is used for, look at its definition and notice
that it’s different from all of the other type classes you’ve seen so far. According
to the definition, an instance of Functor won’t be a type but rather a type
constructor, like Maybe: it’s applied to a type and yields a type.

Functor is used for types that can be mapped over, in a generalisation of
what map :: (a -> b) -> [a] -> [b] does. As you’ve seen, given a function
f :: a -> b, map f :: [a] -> [b] applies f to every element of a list, producing
a list of the results:

> map even [1,2,3,4,5]
[False,True,False,True,False]

In this case, the type constructor t in the definition of Functor is the type
constructor [] for lists, and fmap is map:

instance Functor [] where
fmap = map

Here’s another example, for the Maybe type:

https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Category_theory

Functors
255 24

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

Notice thatwedidn’twrite “instanceFunctor(Maybea)”: only type constructors,
like Maybe, can be instances of Functor, not types. The type of fmap wouldn’t
make sense otherwise. And, fmap only applies f :: a -> b to a value in the case
(Just x) where there is a value of type a—namely x—to apply it to. In the other
case, where there is nothing of type a—that is, Nothing—it does nothing.

Let’s compare these two examples:

• fmap :: (a -> b) -> [a] -> [b] for the list type—that is, map—applies a
function f :: a -> b to each of the values of type a in something of type [a]
to give something of type [b]. That is,

fmap f [a1,a2,. . .,an] = [f a1, f a2, . . ., f an]

• fmap :: (a -> b) -> Maybe a -> Maybe b for the Maybe type applies a function
f :: a -> b to each of the values of type a in something of type Maybe a to
give something of type Maybe b. That is,

fmap f Just a = Just (f a)
fmap f Nothing = Nothing

Here’s a function to square all of the integers in a data structure that is
conditional on its type constructor being an instance of Functor:

squares :: Functor t => t Int -> t Int
squares = fmap (ˆ2)

Then we get:

> squares [2..10]
[4,9,16,25,36,49,64,81,100]
> squares (Just 3)
Just 9

Instances of Functor should satisfy fmap id = id and fmap (f . g) =
fmap f . fmapg.Again, there’s noway forHaskell to enforce these requirements.
It’s important to check it for each new instance declaration, so that users can
rely on Functor instances behaving sensibly.

What about types that involve values of two types, like Either a b and
Pairab?For thoseyoucanuseBifunctor fromthe librarymoduleData.Bifunctor,
which is analogous to Functor but accommodates two types:

class Bifunctor t where
bimap :: (a -> b) -> (c -> d) -> t a c -> t b d

instance Bifunctor Either where
bimap f g (Left x) = Left (f x)
bimap f g (Right y) = Right (g y)

instance Bifunctor Pair where
bimap f g (Pair x y) = Pair (f x) (g y)

24

256 Chapter 24 · Type Classes

Type Classes are Syntactic SugarSyntactic sugar is syntax in a
programming language that makes
things easier to express but adds no
expressive power.

An alternative to the use of type classes is to pass the functions that belong to
the type class as extra parameters. For example, recall the definition of elem:

This is the same as the earlier
definition but using prefix elem
rather than infix `elem` for ease of
comparison with elem' below.

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y:ys) = x==y || elem x ys

Instead of requiring Eq a, we could supply the equality function as an explicit
parameter:

elem' :: (a -> a -> Bool) -> a -> [a] -> Bool
elem' eq x [] = False
elem' eq x (y:ys) = x `eq` y || elem' eq x ys

Then, an application of elem such as:

> elem 5 [1..10]
True

would be replaced by:

> elem' eqInt 5 [1..10]
True

where eqInt :: Int -> Int -> Bool is equality on integers.
The same idea can be used to deal with conditional type class instances. For

example, the declaration that [a] is an instance of Eq:

instance Eq a => Eq [a] where
[] == [] = True
[] == y:ys = False
x:xs == [] = False
x:xs == y:ys = (x == y) && (xs == ys)

becomes

eqList :: (a -> a -> Bool) -> [a] -> [a] -> Bool
eqList eq [] [] = True
eqList eq [] (y:ys) = False
eqList eq (x:xs) [] = False
eqList eq (x:xs) (y:ys) = (x `eq` y) && (eqList eq xs ys)

and then an application of elem to a list of strings:

> elem "of" ["list","of","strings"]
True

would be replaced by:

> elem' (eqList eqChar) "of" ["list","of","strings"]
True

where eqChar :: Char -> Char -> Bool is equality on characters.
The idea of replacing type class requirements in types by extra function

Type classes are introduced and the
translation into Haskell without type
classes is given in “How to make
ad-hoc polymorphism less ad hoc” by
Philip Wadler and Stephen Blott in
Proc. 16th ACM
SIGPLAN-SIGACT Symp. on
Principles of Programming
Languages, 60−76 (1989).

parameters can be applied systematically to all type classes and type class
instances in order to translate Haskell into a simplified version of Haskell
without them; indeed, that’s exactly how type classes are implemented in
practice. In this sense, type classes don’t actually extend Haskell’s power; they
just make things more convenient.

https://doi.org/10.1145/75277.75283

Exercises
257 24

Exercises

1. The Bounded type class is for types that have a minimum and maximum
value:

class Bounded a where
minBound, maxBound :: a

with instances including Int:

> minBound :: Int
-9223372036854775808

Algebraicdata types canbedeclaredas instancesofBoundedusingderiving,
provided either all of their constructors take no parameters, or they have
a single constructor. Explain how that works, for each of these two cases,
without consulting the documentation. For the second case, use the type
Pair from page 136 as an example.

2. In Exercise 21.6, you defined an abstract data type for natural numbers
represented as non-negative integers. Define it to be an instance of Num.

3. The function

evalProp :: (Name -> Bool) -> Prop -> Bool

for evaluating propositions was extended to deal with implications and bi-
implications on page 221. Later, in Exercise 22.5, you were asked to define
a function

evalProp :: (Name -> Predicate u) -> Prop -> Predicate u

that interprets propositions aspredicates rather thanasBooleanvalues.This
was relatively straightforward because both Boolean values and predicates,
with corresponding definitions of the logical connectives, form Boolean
algebras.
Define a type class BoolAlg of Boolean algebras and a function

evalProp :: BoolAlg a => (Name -> a) -> Prop -> a

for evaluatingpropositions inanarbitraryBooleanalgebra.Define instances
of BoolAlg for Boolean values and for predicates.

4. The following algebraic data type gives a polymorphic version of binary
trees, with labels of the given type at the nodes and leaves:

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

Define Tree as an instance of Functor. Check that it behaves as you would
expect.

5. Define the partially applied type of functions, (->) a, as an instance of
Functor. What type of functions does fmap (replicate 3) apply to, and
what does it do when given a function of that type? (Try to figure it out
before trying it in Haskell.)

6. squares (page 255) works on [Int], on Maybe Int, and on t Int for other
Functor instances t. But it doesn’t work on [Maybe Int], which involves a
composition of two Functor instances.
Write a function squares' that, given Functor instances t and s, will work
on t (s Int).

https://doi.org/10.1007/978-3-030-76908-6_21
https://doi.org/10.1007/978-3-030-76908-6_21
https://doi.org/10.1007/978-3-030-76908-6_22
https://doi.org/10.1007/978-3-030-76908-6_22

259 25

Search in Trees
Contents

Representing a Search Space – 260

Trees, Again – 260

Depth-First Search – 261

Breadth-First Search – 263

Best-First Search – 265

Exercises – 267

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_25

25

260 Chapter 25 · Search in Trees

Representing a Search Space

Trees are a common data structure, as you’ve seen. They were used to represent
the syntax of languages like propositional logic in Chap. 16, and as the basis
for an efficient way of representing sets of integers in Chap. 20.

More abstractly, trees can be used to represent search spaces. Nodes
represent positions or situations, and a branch from a node to a sub-tree
indicates a connection of some kind between the position represented by that
node and the position given by the node at the root of that sub-tree.

An example would be a tree representing the game of chess or the game
of Go. The nodes represent positions of the board, with the root of the treeIn a tree representing a game like

chess or Go, you wouldn’t have
binary trees but trees with a list of
sub-trees per node, to take account
of the fact that the number of legal
moves—almost always more than
two—depends on the board
position.

representing the starting position, and the branches representing legal moves in
the game from one board position to another. Another kind of example would
be a tree representing a person’s ancestry. The nodes represent people, and there
is a branch from a to b if b is the mother or father of a. Or, a tree of airports,
with a particular airport as the root node, where a branch from a to b represents
the existence of a flight.

We’re going to look into the problem of searching a tree for a node that
satisfies a given property. For example, we could search for an ancestor who
was born in Venice, or an airport in Samoa that is reachable by a sequence of
flights fromPittsburgh. The trees in questionwon’t satisfy the invariant on node
labels that we saw in the representation of sets as ordered trees in Chaps. 20
and 21, so the efficient search algorithm used there doesn’t apply.

Searching through a solution space is amatter of visiting a sequence of nodes
to find a node that satisfies the property of interest. We’re going to look into
different ways of doing the search. The difference lies in the order in which the
nodes are visited.

We’re going to stick with binary trees because they are familiar, but theThey also work for graphs where the
connections between nodes aren’t
required to form a hierarchy, as they
do in trees. And we’re often
interested in finding the best route to
a node with a given property, not just
the node itself. See for example A*
search, 7 https://en.wikipedia.org/
wiki/A*_search_algorithm.

same ideas hold for trees with arbitrary branching. We’ll use nodes with integer
labels in examples, to keep things simple, and in order to concentrate on the
structure of the search rather than the details of the data. The data at a node
could obviously be much more complicated, and the search algorithms work
for any type of data.

Trees, Again

We’ll use simple binary trees, with labels at the nodes:

data Tree a = Nil | Node (Tree a) a (Tree a)
deriving (Eq,Show)

Here’s an example:

t :: Tree Int
t = Node (Node (Node Nil 4 Nil)

2
(Node Nil 5 Nil))

1
(Node (Node (Node Nil 8 Nil)

6
(Node Nil 9 Nil))

3
(Node Nil 7 Nil))

Drawing t as a tree gives:

https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm

Depth-First Search
261 25

1

2

4

Nil Nil

5

Nil Nil

3

6

8

Nil Nil

9

Nil Nil

7

Nil Nil

And you can build infinite trees, for instance:

inf :: Tree Int
inf = infFrom 0

where
infFrom x = Node (infFrom (x-1)) x (infFrom (x+1))

which defines inf using the recursively defined helper function infFrom. The
infinite tree infFrom n has label n at its root, with its left sub-tree having a label
of n− 1 at its root and its right sub-tree having a label of n+ 1 at its root. Then
inf corresponds to the diagram:

0

-1

-2

-3

· · · · · ·

-1

· · · · · ·

0

-1

· · · · · ·

1

· · · · · ·

1

0

-1

· · · · · ·

1

· · · · · ·

2

1

· · · · · ·

3

· · · · · ·

The way that the labels are arranged in t and inf will turn out to be useful
later in the examples to come, but otherwise there’s nothing special about them.

You can compute with infinite trees in Haskell, relying on lazy evaluation
to avoid infinite computation. For example, here’s a function that returns a list
of the node labels at a given depth:

labelsAtDepth :: Int -> Tree a -> [a]
labelsAtDepth d Nil = []
labelsAtDepth 0 (Node l x r) = [x]
labelsAtDepth n (Node l x r) =

labelsAtDepth (n-1) l ++ labelsAtDepth (n-1) r

Applying it to inf will produce a finite list of node labels:

> labelsAtDepth 3 inf
[-3,-1,-1,1,-1,1,1,3]

When searching through such trees, we’re going to be visiting their nodes in
some particular order. A node is a tree of the form Node l x r, with sub-trees l
and r. Sometimes we’ll refer to this as a tree, especially when its sub-trees are
important, and sometimes we’ll refer to it as a node, especially when its label is
the focus of attention.

Depth-First Search

Suppose we have a predicate—a function from node labels to Bool—that says
whether a node label has the property we’re looking for, or not. Our task is to

25

262 Chapter 25 · Search in Trees

search a given tree to find a node label that satisfies the predicate. (A different
problem, that we’re not going to consider, would be to search for every node
label in the tree that satisfies the predicate.)

If we find a node label for which the predicate produces True then the search
is successful, and we return it. But there may not be any node label in the tree
that satisfies the predicate. The result of the search needs to be of type Maybe a
rather than a to allow for that possibility.

If we’re looking into something that satisfies the predicate in the empty tree,
we’re out of luck: the result is Nothing. If we’re at a node and the predicate
holds for the node label x, we’re finished and return Just x. Otherwise, we
have to look somewhere else. And this is where there’s more than one choice.

The one that we consider first is called depth-first search. The idea is to
exhaustively search the nodes in the left sub-tree before looking at the right
sub-tree. Since we follow the same strategy if the node label at the root of the
left sub-tree doesn’t satisfy the predicate, the search proceeds down the leftmost
path of the tree all the way to a leaf, before looking at the right sub-trees at any
of the nodes that we have encountered along the way.

Here’s a picture showing what happens if we search in the tree t above for
a node label that is greater than 4:

1

2

4

Nil Nil

5

Nil Nil

3

6

8

Nil Nil

9

Nil Nil

7

Nil Nil

1> 4 ?

2> 4 ?

4> 4 ? 5> 4 !

Wepotentially have to visit all of the nodes, because the node labelwe’re looking
for could be anywhere, but the order that we visit them is depth-first and left-
first.

Here’s a diagram that shows the order of visiting the nodes of t in case none
of the node labels satisfies the predicate:

1

2

4

Nil Nil

5

Nil Nil

3

6

8

Nil Nil

9

Nil Nil

7

Nil Nil

We can make the order of visiting the nodes explicit by defining the search
in terms of a function that visits the nodes and records the node labels it sees.
We call a procedure for visiting all of the nodes of the tree a traversal of the
tree. In the case of a depth-first search, we do a depth-first traversal:

dfTraverse :: Tree a -> [a]
dfTraverse Nil = []
dfTraverse (Node l x r) = x : (dfTraverse l) ++ (dfTraverse r)

Given a node, dfTraverse records the label of the node, then traverses the left
sub-tree followed by the right sub-tree. For example:

Breadth-First Search
263 25

> dfTraverse t
[1,2,4,5,3,6,8,9,7]

Then, given a list of the node labels in the tree, we can start with the first
one and search down the list until we find one that satisfies the predicate:

depthFirst :: (a -> Bool) -> Tree a -> Maybe a
depthFirst p t =

head([Just x | x <- dfTraverse t, p x] ++ [Nothing])

The fact that lazy evaluation is used means that the traversal doesn’t need
to be completed before the search begins. Only the portion of the traversal that
is required, from the beginning to the point at which the search succeeds, is
computed. For example:

> depthFirst (< -4) inf
Just (-5)
> dfTraverse inf
[0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10, ...

Of course, if the search fails or if the last node in the traversal is the one forwhich
the predicate is satisfied, then the whole traversal does need to be completed.

Breadth-First Search

Analternative to depth-first search is breadth-first search, which visits the nodes
of the tree in a different order.

When expressed in terms of a traversal, what is different in breadth-first
search is that the traversal proceeds across the tree, in layers. After visiting the
root, which is at depth 0, the nodes immediately below it, at depth 1, are visited.
Then the nodes immediately below those, at depth 2, are visited, and so on. In
each layer, the nodes at that depth are visited from left to right:

bfTraverse :: Tree a -> [a]
bfTraverse t = bft 0 t

where
bft :: Int -> Tree a -> [a]
bft n t | null xs = []

| otherwise = xs ++ bft (n + 1) t
where xs = labelsAtDepth n t

For example:

> bfTraverse t
[1,2,3,4,5,6,7,8,9]

The recursion in the definition of the helper function bft is a little unusual.
The base case is not when n is 0 but rather when the layer of nodes at depth
n is empty. In each recursive call, the depth of the nodes that are considered
increases, from n to n + 1, rather than decreasing. But that’s okay: except when
t is an infinite tree, when the result of bfTraverse is an infinite list, the result
of labelsAtDepth n t will always be empty for a large enough value of n.

A simpler way to compute breadth-first traversal, which makes no explicit
reference to the depth of nodes in the tree, is to maintain a queue of nodes that See 7 https://en.wikipedia.org/wiki/

Queue_(abstract_data_type).remain to be visited. This queue is the parameter of the helper function bft:

Here, the queue is represented as a
list. See Exercise 2 for a version in
which the representation of the
queue is separated from the
implementation of the traversal, as
an abstract data type.

bfTraverse' :: Tree a -> [a]
bfTraverse' t = bft [t]

where
bft :: [Tree a] -> [a]
bft [] = []
bft (Nil : ts) = bft ts
bft (Node l x r : ts) = x : bft (ts ++ [l,r])

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

25

264 Chapter 25 · Search in Trees

When a node is visited, its label is recorded and its sub-trees are added to the
end of the queue. The nodes at depth d will be visited before any of the nodes
at depth d + 1 since those will be added to the queue after all of the nodes at
depth d are already there.

The code for breadth-first search is exactly the same as the code for depth-
first search, except that it uses bfTraverse in place of dfTraverse:

breadthFirst :: (a -> Bool) -> Tree a -> Maybe a
breadthFirst p t =

head([Just x | x <- bfTraverse t, p x] ++ [Nothing])

Using breadth-first search, we get the same results as we did for depth-first
search in the examples above:

> breadthFirst (>4) t
Just 5
> breadthFirst (< -4) inf
Just (-5)

But for other examples, the result differs for these two search strategies:

> depthFirst (>2) t
Just 4
> breadthFirst (>2) t
Just 3

Both results are correct since both 4 and 3 are node labels in t and both satisfy
the predicate (>2). The difference in results comes from the different order
in which nodes are visited, since more than one node label in t satisfies the
predicate.

The difference between depth-first search and breadth-first search becomes
more important when searching in infinite trees.

Suppose we’re searching for a node label that is greater than 0 in the infinite
tree inf. Depth-first searchwill run forever, searching further and further down
the infinite leftmost path through the tree:

> depthFirst (>0) inf
... runs forever ...

Here’s a diagram:

0

-1

-2

-3

· · · · · ·

-1

· · · · · ·

0

-1

· · · · · ·

1

· · · · · ·

1

0

-1

· · · · · ·

1

· · · · · ·

2

1

· · · · · ·

3

· · · · · ·

0> 0 ?

−1> 0 ?

−2> 0 ?

−3> 0 ?

But breadth-first search succeeds:

> breadthFirst (>0) inf
Just 1

because it searches in layers:

Best-First Search
265 25

0

-1

-2

-3

· · · · · ·

-1

· · · · · ·

0

-1

· · · · · ·

1

· · · · · ·

1

0

-1

· · · · · ·

1

· · · · · ·

2

1

· · · · · ·

3

· · · · · ·

0 > 0 ?

−1 > 0 ? 1 > 0 !

The most important advantage of breadth-first search is that it will always
succeed if there is a node label somewhere in the tree that satisfies the predicate,
while depth-first search will sometimes run forever on infinite trees even if a
node label satisfying the predicate is present. For finite trees, both depth-first
and breadth-first search will always terminate, of course.

The difference between depth-first search and breadth-first search is not
merely of academic interest, since infinite search spaces are common. All of the
motivating examples mentioned at the beginning of this chapter are infinite or
nearly infinite. The tree representing the game of chess is infinite, or finite but
huge. Similarly for the game of Go. The tree representing a person’s ancestry is

Whether or not these trees are
infinite depends on whether rules
that stop the game due to repetition
of a position or lack of interesting
action are disregarded or not. The
number of legal positions in Go is
about 2.1× 10170, which is greater
than the number of atoms in the
known universe, see 7 https://en.
wikipedia.org/wiki/Go_(game).

finite but very large, especially if ancestors preceding Homo sapiens are taken
into account. The tree representing airports and flights is infinite for almost
every choice of root airport, because of the presence of cyclical sequences of
flights.

Best-First Search

In both depth-first search and breadth-first search, the order of nodes to be
searched is fixed in advance. An alternative is best-first search, where the order
depends on the nodes that are encountered during the search.

The idea behind best-first search is the observation that the node labels
in typical search spaces aren’t random. The information they contain often
indicates how close the search is to success, and which direction of movement
through the search space is most likely to be fruitful. In the example of airports
and flights, a flight with a destination that reduces the distance to the goal
airport is more promising than a flight that moves in the opposite direction.
Or, big airports withmany outgoing flights might be preferred to small airports
with only a few flights.

A simple way to implement this idea is to use an evaluation function that See 7 https://en.wikipedia.org/wiki/
Evaluation_function.estimates how close a position is to success, and choose the next node to

visit based on its results. We’ll use an evaluation function that takes a node
as input and produces an integer score as output. The choice of evaluation
function should depend on the search goal. For the airport/flight example,
the geographical location of the airport in the node label and/or how many
outgoing flights it has will be relevant to its score. In our final implementation
of the DPLL algorithm on page 184, the lengths of the remaining clauses are
used to decide which clause to choose next.

To implement best-first traversal—in terms of which best-first search will
be expressed—we’ll use a priority queue to keep track of nodes to be visited. See 7 https://en.wikipedia.org/wiki/

Priority_queue.A priority queue is a queue in which items—in this case trees—are ordered
according to their priorities rather than when they joined the queue. Its API is:

type PQ b
emptyPQ :: (b -> Int) -> PQ b
insertPQ :: b -> PQ b -> PQ b

https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Evaluation_function
https://en.wikipedia.org/wiki/Evaluation_function
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Priority_queue

25

266 Chapter 25 · Search in Trees

topPQ :: PQ b -> b
popPQ :: PQ b -> PQ b
isemptyPQ :: PQ b -> Bool

where the type variable b will be instantiated to Tree a.
In thesepriorityqueues, prioritieswill be assignedby the evaluation function,

and creation of an empty priority queue (emptyPQ) requires an evaluation
function. The priority of each item added using insertPQ is calculated using
that function, so that the highest-priority item is always at the front of the
queue. That item is obtained using the function topPQ, and popPQ gives the
remainder of the queue.

The function insertPQ' inserts
items into the priority queue using
insertPQ. But it doesn’t insert empty
trees, which simplifies the definition
of bft.

bestFirstTraverse :: (Tree a -> Int) -> Tree a -> [a]
bestFirstTraverse f t = bft (insertPQ t (emptyPQ f))

where
bft :: PQ (Tree a) -> [a]
bft pq | isemptyPQ pq = []

| otherwise = x : bft (insertPQ' r (insertPQ' l pq'))
where Node l x r = topPQ pq

pq' = popPQ pq

insertPQ' :: Tree a -> PQ (Tree a) -> PQ (Tree a)
insertPQ' Nil pq = pq
insertPQ' t pq = insertPQ t pq

bestFirst :: (a -> Bool) -> (Tree a -> Int) -> Tree a -> Maybe a
bestFirst p f t =

head([Just x | x <- bestFirstTraverse f t, p x] ++ [Nothing])

Thepriority queue is used tomaintain a list of nodes that haven’t been visited
yet because they’ve been postponed in order to consider more promising nodes
first. They are next in line for consideration in case the node currently being
visited doesn’t satisfy the predicate. Keeping them in a priority queue means
that the next best choice is always at the front of the queue.

As an example, suppose we’re searching inf for a node label that is greater
than 19. There are many such node labels in inf, but the right sub-tree of the
root looks more promising than its left sub-tree. Once we decide to look at that
node, its right sub-tree looks more promising than its left sub-tree, and so on.

The type we are using for evaluation functions allows more information
than the label of a node to be used to produce a score. The information in the
sub-trees of that node could also be taken into account. But since we’re looking
for a node label that is larger than a given value, we’ll just use the node label
itself as its score, so that nodes with larger labels will have higher scores:

eval :: Tree Int -> Int
eval Nil = 0
eval (Node l x r) = x

That evaluation functionworkswell in this case. Comparing it with breadth-
first search, the same result is obtained:

> bestFirst (>19) eval inf
Just 20
> breadthFirst (>19) inf
Just 20

Exercises
267 25

but best-first search is successful after visiting 21 nodes, while breadth-first
search visited 2,097,151 nodes. 2,097,151= 221 − 1: the first node

visited whose label satisfies the
predicate is on the right-hand end of
level 20 of the tree.

In fact, best-first search is optimal in this case, in terms of the number of
nodes that are visited starting from the root. Suppose we try searching for a
node label that is greater than 100:

> bestFirst (>100) eval inf
Just 101

Using best-first search visits 102 nodes. Using breadth-first search for the
same problem visits 5,070,602,400,912,917,605,986,812,821,503 nodes. Wow,
artificial intelligence!

The success of best-first search with respect to “blind” breadth-first search
critically depends on the choice of evaluation function, together with the
structure of the search space. The infinite tree inf has a very regular structure,
which made it easy to get good results using a simple evaluation function.

In this sense, best-first search is related to the hill climbing optimisation See 7 https://en.wikipedia.org/wiki/
Hill_climbing.technique. Hill climbing attempts to find an optimal solution to a problem

by starting from an arbitrary solution and incrementally improving it. An
evaluation function is used to decide which of the possible new solutions are
improvements over the existing solution, and the best new solution is then used
to continue climbing. If you want to get to the top of a hill, a good heuristic is
to always go uphill, and the steeper the better if you want to get there fast.

Hill climbing will always find a local optimum but it is not guaranteed to
find a global optimum if that would require temporarily going “downhill”, as
in the right-hand diagram below when starting from the left corner:

Best-first search may reach its goal in such cases, because it keeps track of
unexplored sub-trees that look less promising than the one it has chosen, and
considers them later. But it may waste time by first exploring regions of the
search space that look promising but don’t work out.

Exercises

1. In 7 http://www.intro-to-computation.com/meadows.hs you will find the

See 7 https://en.wikipedia.org/wiki/
The_Meadows,_Edinburgh. Data
for all trees maintained by the City of
Edinburgh Council can be found in
7 https://data.edinburghopendata.
info/dataset/edinburgh-council-
trees-dataset.

code in this chapter together with a tree

meadowTreesTree :: Tree String

containing data about each of the trees in TheMeadows in Edinburgh, one
per node. Use depth-first and/or breadth-first search to find out whether or
not there is a Sequoiadendron giganteum (Giant redwood) there.

2. Re-write bfTraverse' so that it has exactly the same structure as
bestFirstTraverse, but using a queue (implemented as an abstract data
type) rather than a priority queue. The goal is to show that best-first search
differs from breadth-first search only in the use of a priority queue in place
of an ordinary queue.

3. Implement priority queues as an abstract data type, with the API given on
page 265.

https://en.wikipedia.org/wiki/Hill_climbing
https://en.wikipedia.org/wiki/Hill_climbing
http://www.intro-to-computation.com/meadows.hs
https://en.wikipedia.org/wiki/The_Meadows,_Edinburgh
https://en.wikipedia.org/wiki/The_Meadows,_Edinburgh
https://data.edinburghopendata.info/dataset/edinburgh-council-trees-dataset
https://data.edinburghopendata.info/dataset/edinburgh-council-trees-dataset
https://data.edinburghopendata.info/dataset/edinburgh-council-trees-dataset

25

268 Chapter 25 · Search in Trees

Hint: One possible data representation is like the ordered list representation
of sets on page 194, but the operations are different and the order is
according to the result of applying the evaluation function to nodes.

4. Iterative deepening search is a hybrid between depth-first and breadth-firstSee 7 https://en.wikipedia.org/wiki/
Iterative_deepening_depth-
first_search.

search. It visits nodes in the same order as depth-first search, but with a
depth limit. The search is run repeatedly with increasing depth limits until
the search is successful or the tree has been searched completely. Implement
iterative deepening search in Haskell.

5. Define an evaluation function that would be appropriate for use with best-
first search in a tree with integer labels when searching for a node label that
satisfies the predicate (==7).

6. You’ve finished Chap. 25. Well done! It’s high time for some real-life
exercise. Go jogging, or cycling, or for a long walk in the fresh air.

https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search
https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search
https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search

269 26

Combinatorial Algorithms

Contents

The Combinatorial Explosion – 270

Repetitions in a List – 270

Sublists – 271

Cartesian Product – 272

Permutations of a List – 273

Choosing k Elements from a List – 275

Partitions of a Number – 276

Making Change – 277

Eight Queens Problem – 278

Exercises – 280

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_26

26

270 Chapter 26 · Combinatorial Algorithms

The Combinatorial Explosion

Some of the programs you have seen use clever algorithms or clever data
representations to avoid unnecessary computation. But for some problems,
there is no clever algorithm, or at least none that has been discovered yet.
The best-known method might then be generate and test: simply enumerateThis is also known as brute force

search, see 7 https://en.wikipedia.
org/wiki/Brute-force_search.

all of the possible solutions and check them to find one that satisfies the
given requirements. Or sometimes we need to find all the ones that satisfy
the requirements, or the best ones according to some measure of quality, or to
check if they all satisfy the requirements.

Whether or not this is tractable depends on the number of possible solutions
and how easily they can be checked. A situation inwhich the number of possible
solutions grows rapidly with increasing problem size, as in the case of finding
all of the prime factors of a given n-digit integer, is referred to as a combinatorial
explosion. Then only small problems can be handled in a reasonable period of
time. The security of many cryptographic algorithms is based on the difficultyFor example, the security of the

widely-used RSA public-key
cryptosystem (see 7 https://en.
wikipedia.org/wiki/
RSA_(cryptosystem)) is based on the
intractability of factorising large
integers.

of solving large problems of this kind.
The tractability of such problems can sometimes be improved by exploiting

symmetries or other structure of the problem space that makes it possible to
reduce, often dramatically, the number of solutions that need to be checked.
Sometimes heuristics can be used to improve the order in which potential
solutions are checked tomake itmore likely that a solutionwill be found earlier.

In this chapter we’re going to look at some programs for solving problems
of this kind. We’ll start with functions that can be used to enumerate potential
solutions. All of the programs we’ll look at are simple, but sometimes there are
choices that make dramatic differences in run time.

Repetitions in a List

We’ll be working mainly with lists containing distinct elements—i.e. without
repetitions—because it makes things simpler for some of the problems below.
To get started, here’s the function nub from the Data.List library module
which removes repetitions from a list:

nub :: Eq a => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub [y | y <- xs, x /= y]

We’ll need to test lists to see whether their elements are distinct or not. One
way of doing that is to compare the list with the same list after nub has removed
any repetitions. If those are the same, then the list’s elements are distinct. This
takes advantage of the fact that nub preserves the order of the elements in its
input:

distinct :: Eq a => [a] -> Bool
distinct xs = xs == nub xs

This gives:

> distinct "avocado"
False
> distinct "peach"
True

https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Sublists
271 26

Sublists

A list xs is a sublist of another list ys if every value in xs is also in ys. The This is the same as checking if one set
is a subset of another set when sets
are represented as unordered lists,
see page 193.

elements in xs don’t need to appear in the same order in ys. Note that ys is also
a sublist of itself.

sub :: Eq a => [a] -> [a] -> Bool
xs `sub` ys = and [x `elem` ys | x <- xs]

For example:

> "pea" `sub` "apple"
True
> "peach" `sub` "apple"
False

Given a list xs containing distinct elements, let’s consider the problem of
generating all sublists of xs. How many are there? In any given sublist of xs,
each item in xs is either in that sublist or not. That gives 2n possible sublists,
where n = length xs. We can use that idea to generate all of the sublists of a
list by recursion:

subs :: [a] -> [[a]]
subs [] = [[]]
subs (x:xs) = subs xs ++ map (x:) (subs xs)

The base case says that the only sublist of the empty list is the empty list. Notice
that replacing this with subs [] = [] would be incorrect! It says that there are
no sublists of the empty list, which is false, and which would lead to subs xs
yielding [] for any list xs. For the recursive case x:xs, there are all the sublists
of the tail xs (which don’t contain x), plus all of those lists with x added (which
do contain x, of course). For example:

> subs [0,1]
[[],[1],[0],[0,1]]
> subs "abc"
["","c","b","bc","a","ac","ab","abc"]

According to the recursive case, the length of subs (x:xs) is twice the
length of subs xs, since it contains subs xs and another list produced from
subs xs by adding x onto the front of each of its elements. That, together with
length (subs []) = 1, imply that length (subs xs) = 2length xs.

Thesubs function should satisfy anumberofproperties.Restrictingattention
to lists xs containing distinct elements:

• everything in subs xs is indeed a sublist of xs;
• the elements of subs xs are distinct, so each sublist is only generated once;
• the elements of each of the sublists of xs are distinct; and
• the length is as we expect.

These properties can be expressed in QuickCheck as follows:

subs_prop :: [Int] -> Property
subs_prop xs =

distinct xs ==>
and [ys `sub` xs | ys <- subs xs]
&& distinct (subs xs)
&& all distinct (subs xs)
&& length (subs xs) == 2 ˆ length xs

26

272 Chapter 26 · Combinatorial Algorithms

Because subs :: [a] -> [[a]] is polymorphic, it needs to be tested at an
instance of its type, and so subs_prop tests it for lists of integers. The same
goes for all of the tests of polymorphic functions in the rest of this chapter.

Unfortunately, it isn’t feasible to check that this property holds using
QuickCheck in the usual way because 100 random test cases are likely to include
some long lists. We have seen that a list of length 100 has 2100 sublists. Since
the run time of distinct is O(n2), checking that no sublist has been included
twice will take a very long time.

Luckily, we can adapt QuickCheck by restricting test cases to be smaller
than a given size, as follows:

See 7 https://hackage.haskell.org/
package/QuickCheck-2.14.2/docs/
Test-QuickCheck.html for other
ways of adjusting QuickCheck’s
behaviour.

sizeCheck n = quickCheckWith (stdArgs {maxSize = n})

Testing subs_prop for lists of length 10 should be okay, since 210 = 1024. And
the test succeeds:

> sizeCheck 10 subs_prop
+++ OK, passed 100 tests; 22 discarded.

(Here, ‘‘22 discarded’’ refers to the lists that weren’t tested because their
elements aren’t distinct and so they failed the pre-condition of subs_prop.)

Cartesian Product

Next, we’ll look at theCartesian product. Given two sets S andT , the Cartesian
product S × T is the set of pairs (s, t) with s ∈ S and t ∈ T . We’re
working with lists instead of sets, where the analogous function has type
[a] -> [b] -> [(a,b)]:

cpair :: [a] -> [b] -> [(a,b)]
cpair xs ys = [(x,y) | x <- xs, y <- ys]

It’s easy to see that the length of cpair xs ys is the product of the lengths of xs
and ys.

Generalising this, the Cartesian product of a list of n lists yields a list
containing lists of length n:

cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) = [y:ys | y <- xs, ys <- cp xss]

As with subs [], cp [] is [[]]: the Cartesian product of the empty list of listsThis is analogous to the Haskell type
() of 0-tuples, which has a single
value ().

contains just the empty list.
Again, the cp function should satisfy someproperties, provided the elements

in all of the lists in its input are distinct:

• the ith element of each list in cp xss is from the ith list in xss;
• the elements of cp xss are distinct;
• the elements of each of the lists in cp xss are distinct;
• each list in cp xss has the same length as xss; and
• the length of cp xss is the product of the lengths of the lists in xss.

The following function expresses these properties:

cp_prop :: [[Int]] -> Property
cp_prop xss =

distinct (concat xss) ==>
and [and [elem (ys !! i) (xss !! i)

| i <- [0..length xss-1]]
| ys <- cp xss]

&& distinct (cp xss)

https://hackage.haskell.org/package/QuickCheck-2.14.2/docs/Test-QuickCheck.html
https://hackage.haskell.org/package/QuickCheck-2.14.2/docs/Test-QuickCheck.html
https://hackage.haskell.org/package/QuickCheck-2.14.2/docs/Test-QuickCheck.html

Permutations of a List
273 26

&& all distinct (cp xss)
&& all (\ys -> length ys == length xss) (cp xss)
&& length (cp xss) == product (map length xss)

This test will run using QuickCheck, but it gives up before finishing because
most of the test cases it generates contain repetitions:

> quickCheck cp_prop
*** Gave up! Passed only 54 tests; 1000 discarded tests.

Smaller test cases are less likely to contain repetitions:

> sizeCheck 10 cp_prop
+++ OK, passed 100 tests; 130 discarded.

Permutations of a List

Now let’s consider the problem of computing all of the permutations of a list:
that is, all of the ways of rearranging its elements, including the rearrangement
that keeps them in place. For example, there are six permutations of the list

See 7 https://en.wikipedia.org/wiki/
Permutation. There are many
applications of permutations in
science and Mathematics. An
application in a different area is to
change ringing in church bell towers,
where permutations of the bells are
rung without repetitions following
certain rules, see 7 https://en.
wikipedia.org/wiki/Change_ringing.

["auld","lang","syne"]:

["auld","lang","syne"] ["auld","syne","lang"]
["lang","auld","syne"] ["lang","syne","auld"]
["syne","auld","lang"] ["syne","lang","auld"]

Again, we’ll restrict attention to lists containing distinct elements. For a list of
length n, there are n! permutations: n possible choices for the first element, then
n − 1 remaining choices for the second element, etc.

We can compute all the permutations of a list xs of length n without
repetitionsusing theCartesianproduct functioncp: just take then-foldCartesian
product of xs with itself and remove lists whose elements are not distinct:

permscp :: Eq a => [a] -> [[a]]
permscp xs | distinct xs =

[ys | ys <- cp (replicate (length xs) xs), distinct ys]

Properties of permscpxs, for listsxs of length n containing distinct elements,
are:

• each of the permutations has the same elements as xs;
• the elements of permscp xs are distinct;
• the elements of each of the lists in permscp xs are distinct; and
• the length of permscp xs is n!

which are expressed as follows:

permscp_prop :: [Int] -> Property
permscp_prop xs =

distinct xs ==>
and [sort ys == sort xs | ys <- permscp xs]
&& distinct (permscp xs)
&& all distinct (permscp xs)
&& length (permscp xs) == fac (length xs)

fac :: Int -> Int
fac n | n >= 0 = product [1..n]

https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Change_ringing
https://en.wikipedia.org/wiki/Change_ringing

26

274 Chapter 26 · Combinatorial Algorithms

And these properties hold:

> sizeCheck 10 permscp_prop
+++ OK, passed 100 tests; 29 discarded.

This is a generate and test algorithm. The space of possible solutions is the
n-fold Cartesian product of the input list with itself, and the result is obtained
by testing all of those possibilities to find the ones that have no repetitions.
Unfortunately, generating permutations this way is very inefficient. If xs has
length n, then cp (replicate (length xs) xs) contains nn lists. If n is 10, then
nn = 10,000,000,000, and all but 3,628,800 of those contain repetitions. The
function n! grows considerably more quickly than the exponential function
2n, but the function nn grows much faster even than n!, so the proportion
not containing repetitions decreases rapidly with increasing n. Let’s try to find
something better.

We’ll start by finding all of the possible ways of splitting a list, where one
element is separated out from the rest. The following definition does this by
progressingdown the list, starting from thehead, and separatingout the selected
element each time:

See Exercise 2 for an alternative
definition of splits.

splits :: [a] -> [(a, [a])]
splits xs =

[(xs!!k, take k xs ++ drop (k+1) xs) | k <- [0..length xs-1]]

Here’s an example:

> splits "abc"
[('a',"bc"),('b',"ac"),('c',"ab")]

For a list of length n there will be n splits, one for each element in the list,
and the length of the rest is always n− 1. If the elements of xs are distinct, then
other properties of splits xs are:

• each of the splits has the same elements as xs;
• each of the lists of remaining elements is distinct;
• each of the separated-out elements is distinct; and
• all of the elements of each list of remaining elements are distinct.

Here they are as a QuickCheck property:

splits_prop :: [Int] -> Property
splits_prop xs =

distinct xs ==>
and [sort (y:ys) == sort xs | (y,ys) <- splits xs]
&& and [1 + length ys == length xs | (y,ys) <- splits xs]
&& distinct (map snd (splits xs))
&& distinct (map fst (splits xs))
&& all distinct (map snd (splits xs))
&& length (splits xs) == length xs

There’s no harm in doing this test without any restriction on the length of the
test case:

> quickCheck splits_prop
+++ OK, passed 100 tests; 234 discarded.

Computing all the permutations of a list is easy, using the splits function.
Here’s a recursive definition:

perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:xs) = [y:zs | (y,ys) <- splits (x:xs), zs <- perms ys]

Choosing k Elements from a List
275 26

The result for the empty list is, again, [[]]. For each split (y,ys) of x:xs,
we add y to the beginning of each of the permutations of ys. This gives all of
the permutations with y at the front, for each selected item y.

For example:

> perms "abc"
["abc","acb","bac","bca","cab","cba"]

The properties of perms are the same as before for permscp:

perms_prop :: [Int] -> Property
perms_prop xs =

distinct xs ==>
and [sort ys == sort xs | ys <- perms xs]
&& distinct (perms xs)
&& all distinct (perms xs)
&& length (perms xs) == fac (length xs)

And again, these properties hold:

> sizeCheck 10 perms_prop
+++ OK, passed 100 tests; 36 discarded.

We can also check that both versions give the same result:

perms_permscp_prop :: [Int] -> Property
perms_permscp_prop xs =

distinct xs ==> perms xs == permscp xs

Then:

> sizeCheck 10 perms_permscp_prop
+++ OK, passed 100 tests; 26 discarded.

Choosing k Elements from a List

We’ll now look at the problem of computing all of the ways of choosing k In Mathematics, these are called
k-combinations, see 7 https://en.
wikipedia.org/wiki/Combination.

elements from a list of length n. The result will be a list of lists, where the order
of the elements in the individual lists doesn’tmatter, in contrast to permutations.

This problem is related to the problem of finding all of the sublists of a list
that we considered earlier: all of the lists that we choose are sublists, but they
are required to have a particular length. The definition of choose is therefore
similar to the definition of subs above:

See Exercise 4 for an alternative
definition of choose.

choose :: Int -> [a] -> [[a]]
choose 0 xs = [[]]
choose k [] | k > 0 = []
choose k (x:xs) | k > 0 =

choose k xs ++ map (x:) (choose (k-1) xs)

Choosing 0 elements from any list is easy, and choosing k elements from
the empty list, if k > 0, is impossible. Otherwise, we need to do some work.
To choose k elements from x:xs, we can either choose them all from xs, not
including x, or else choose k − 1 elements from xs and then add on x to make
k elements.

For example:

> choose 3 "abcde"
["cde","bde","bce","bcd","ade","ace","acd","abe","abd","abc"]

https://en.wikipedia.org/wiki/Combination
https://en.wikipedia.org/wiki/Combination

26

276 Chapter 26 · Combinatorial Algorithms

For a list xs of length n whose elements are distinct and 0 ≤ k ≤ n, the
expected properties of choose k xs are:

• each of its elements is a sublist of xs that has the correct length;
• all of them are different;
• the elements of each of them are distinct; and
• there are

(n
k

) = n!
k!(n−k)! of them.The binomial coefficient

(n
k
)
is

pronounced “n choose k”.
which are expressed as follows:

choose_prop :: Int -> [Int] -> Property
choose_prop k xs =

0 <= k && k <= n && distinct xs ==>
and [ys `sub` xs && length ys == k | ys <- choose k xs]
&& distinct (choose k xs)
&& all distinct (choose k xs)
&& length (choose k xs) == fac n `div` (fac k * fac (n-k))

where n = length xs

And altogether, taking all k such that 0 ≤ k ≤ n, there are 2n of them:

choose_length_prop :: [Int] -> Bool
choose_length_prop xs =

sum [length (choose k xs) | k <- [0..n]] == 2ˆn
where n = length xs

Finally, taking all of them together gives all of the sublists of xs:

choose_subs_prop :: [Int] -> Bool
choose_subs_prop xs =

sort [ys | k <- [0..n], ys <- choose k xs] == sort (subs xs)
where n = length xs

Then:

> sizeCheck 10 choose_prop
+++ OK, passed 100 tests; 286 discarded.
> sizeCheck 10 choose_length_prop
+++ OK, passed 100 tests.
> sizeCheck 10 choose_subs_prop
+++ OK, passed 100 tests.

Partitions of a Number

We’ll now consider the problem of finding all of the ways of splitting a number
n into a list of strictly positive numbers in ascending order that add up to n:

partitions :: Int -> [[Int]]
partitions 0 = [[]]
partitions n | n > 0

= [k : xs | k <- [1..n], xs <- partitions (n-k),
all (k <=) xs]

There is no set of strictly positive numbers that sum up to 0. Otherwise, for
each k between 1 and n, we add k to each of the partitions of n− k, provided it
is no bigger than any of their elements. The latter property is what causes the
resulting partitions to be arranged in ascending order.

Let’s check that it works:

> partitions 5
[[1,1,1,1,1],[1,1,1,2],[1,1,3],[1,2,2],[1,4],[2,3],[5]]

Making Change
277 26

The properties of partitions n are:

• adding up all of the numbers in each partition should give n; and
• sorting any list of strictly positive integers gives one of the partitions of its

sum.

These are expressed as the following QuickCheck properties:

partitions_prop :: Int -> Property
partitions_prop n =

n >= 0 ==> all ((== n) . sum) (partitions n)

partitions_prop' :: [Int] -> Property
partitions_prop' xs =

all (> 0) xs ==> sort xs `elem` partitions (sum xs)

and both of them hold:

> sizeCheck 10 partitions_prop
+++ OK, passed 100 tests; 70 discarded.
> sizeCheck 8 partitions_prop'
+++ OK, passed 100 tests; 131 discarded.

Making Change

Related to the partition problem is the problem of making change in a shop.
Given an amount n of money to be returned to the customer, what are all the
ways of doing that given a certain collection xs of coins? What we want are
sublists of xs that add up to n, but xs and the sublists may contain repetitions.

The following definitions starts by sorting the list of coins into ascending
order. Then, if n is 0, it’s easy: you don’t need any coins. Otherwise, we pick out
a coin y using splits, leaving the remainder ys. If y <= n then including y is a
candidate for making change for n, and we add it to all ways of making change
for n-y, using coins that are greater than or equal to y:

type Coin = Int
type Total = Int

change :: Total -> [Coin] -> [[Coin]]
change n xs = change' n (sort xs)

where change' 0 xs = [[]]
change' n xs | n > 0 =

[y : zs | (y, ys) <- nub (splits xs),
y <= n,
zs <- change' (n-y) (filter (y <=) ys)]

See Exercise 5 for an alternative
definition of change.

Applying nub to the result of splits is necessary to ensure that we get each
result onlyonce: otherwisewewouldget all thewaysofmaking change involving
the first 5p piece, then separately all the ways of making change involving the
second 5p piece, etc.

So we get, for example:

> change 30 [5,5,10,10,20]
[[5,5,10,10],[5,5,20],[10,20]]

A property of change is that all of the ways of making change for n add up
to n, provided n is positive and all of the coin denominations are greater than
zero:

change_prop :: Total -> [Coin] -> Property
change_prop n xs =

26

278 Chapter 26 · Combinatorial Algorithms

0 <= n && all (0 <) xs ==>
all ((== n) . sum) (change n xs)

And it works:

> sizeCheck 10 change_prop
+++ OK, passed 100 tests; 486 discarded.

Eight Queens Problem

Queens are the most powerful pieces in chess: they can move any number of
squares vertically, horizontally, or diagonally. Can you place eight queens on a

The eight queens problem is a
famous combinatorial puzzle, see
7 https://en.wikipedia.org/wiki/
Eight_queens_puzzle. There are
solutions to its generalisation to n
queens and an n × n chessboard for
all n except 2 and 3.

standard 8× 8 chessboard so that none of them is attacking any of the others?
Here’s a solution:

Our method for solving this problem will take into account the observation
that there will always be one queen in each column: if there were two or more
then they would be able to attack each other, and if there were none then some
other column would have at least two.

We’ll label rows and columns with integers, and positions on the boardStandard chess notation uses the
letters a−h for columns, but numbers
are a little easier to compute with.

with their coordinates. The solutions are boards, which are lists giving the row
numbers of the queens in each column, where the diagram above corresponds
to [1,5,8,6,3,7,2,4].

type Row = Int
type Col = Int
type Coord = (Col, Row)
type Board = [Row]

queens :: Col -> [Board]
queens 0 = [[]]
queens n | n > 0 =

[q:qs | q <- [1..8],
qs <- queens (n-1),
and [not (attack (1,q) (x,y))

| (x,y) <- zip [2..n] qs]]

https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle

Eight Queens Problem
279 26

attack :: Coord -> Coord -> Bool
attack (x,y) (x',y') =

x == x' -- both in the same column
|| y == y' -- both in the same row
|| x+y == x'+y' -- both on the line y = -x + b
|| x-y == x'-y' -- both on the line y = x + b

The first test is actually superfluous
since no two queens will be placed in
the same column.

We do this by recursion on the number of columns left to fill. The base case is
0: there is just one solution, with no queens. Every solution for n is built from
a solution qs for n-1 by adding one more queen in the new column, in row q,
provided it can’t attack any of the queens in qs.

The first solution that this finds is the one shown above, and there are 92
solutions altogether:

> head (queens 8)
[1,5,8,6,3,7,2,4]
> length (queens 8)
92

An improved approach to this problem will be to use a generate and test
algorithm. Some care is required, in view of the fact that there are

(64
8

) =
4,426,165,368 ways to place 8 queens on an 8 × 8 chessboard. The function
definition above takes into account the fact that there will always be one
queen in each column, which reduces the number of possible solutions to 88 =
16,777,216. By also eliminating solutions that place two queens in the same
row, we further reduce the problem to finding permutations of the row numbers
[1..8]—of which there are 8! = 40,320—such that no queen attacks any other
queen.

queens' :: [Board]
queens' = filter ok (perms [1..8])

ok :: Board -> Bool
ok qs = and [not (attack' p p') | [p,p'] <- choose 2 (coords qs)]

coords :: Board -> [Coord]
coords qs = zip [1..] qs

attack' :: Coord -> Coord -> Bool
attack' (x,y) (x',y') = abs (x-x') == abs (y-y')

In order to check the ok property, we just need to check the diagonals. And
abs (x-x') == abs (y-y') gives True iff (x,y) and (x',y') are either both
on the line y = x + b or both on the line y = −x + b.

Comparing this with the previous solution, with Haskell set to display
elapsed time and space usage, shows that it is much more efficient:

> :set +s
> head (queens 8)
[1,5,8,6,3,7,2,4]
(12.27 secs, 6,476,809,144 bytes)
> length (queens 8)
92
(159.74 secs, 83,589,840,216 bytes)
> head queens'
[1,5,8,6,3,7,2,4]
(0.11 secs, 41,654,024 bytes)
> length queens'
92
(1.25 secs, 575,798,296 bytes)

26

280 Chapter 26 · Combinatorial Algorithms

Exercises

1. Consider a version of subs_proponpage 271 inwhich the elements of xs are
not required to be distinct. Which of the properties given would still hold?
What about cp_prop on page 272? What about splits_prop on page 274?

2. Give a recursive definition of the splits function (page 274).
3. Define theworld’sworst sorting function,usingagenerate and test approach:

it should generate all permutations of the input list and then select the one
that is in ascending order.

4. Give an alternative definition of choose (page 275) that takes a generate and
test approach, where subs is used to generate all of the possible solutions.
How does its performance compare?

5. Give an alternative definition of change (page 277) that takes a generate and
test approach, where subs is used to generate all of the possible solutions.
How does its performance compare?
Hint: The list of coins may contain repetitions—and multiple coins of the
same denomination may be required to make change—so you will need to
make sure (see Exercise 1) that subs behaves appropriately in that case.
Then use nub on the result. (Why?)

6. A variation on the eight queens problem is the fourteen bishops problem,
which requires placement of 14 bishops on a chessboard such that none

See 7 https://en.wikipedia.org/wiki/
Mathematical_chess_problem
for similar chess problems.

of them can capture any other one. Bishops can move any number of
squares diagonally but can’tmove vertically or horizontally.Write aHaskell
program that finds a solution. How many are there altogether?
(Hint: Instead of placing pieces in columns, place them in diagonals. Why
is the maximum 14 instead of 15?)

7. The following function for computing the Fibonacci numbersThe Fibonacci numbers (see
7 https://en.wikipedia.org/wiki/
Fibonacci_number) are named after
the Italian mathematician Leonardo
of Pisa, also known as Fibonacci (c.
1170 −c. 1240−50), who introduced
them in Europe after their first
discovery by Indian mathematicians
hundreds of years earlier.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

takes exponential time, because the evaluation of fib n requires repeated
evaluation of fib (n − 2), . . . , fib 0. An alternative is the following
definition, using memoisation, where computation is replaced by lookup

See 7 https://en.wikipedia.org/wiki/
Memoization. Memoisation was
invented by Donald Michie
(1923−2007), a British researcher in
Artificial Intelligence.

in fiblist:

fiblist :: [Int]
fiblist = map fib' [0..]

fib' :: Int -> Int
fib' 0 = 0
fib' 1 = 1
fib' n = fiblist!!(n-1) + fiblist!!(n-2)

Compare the run times of these two definitions.

https://en.wikipedia.org/wiki/Mathematical_chess_problem
https://en.wikipedia.org/wiki/Mathematical_chess_problem
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Memoization
https://en.wikipedia.org/wiki/Memoization

281 27

Finite Automata
Contents

Models of Computation – 282

States, Input and Transitions – 282

Some Examples – 285

Deterministic Finite Automata – 286

SomeMore Examples – 287

How to Build a DFA – 288

Black Hole Convention – 290

Exercises – 292

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_27

27

282 Chapter 27 · Finite Automata

Models of Computation

As you saw in Chap. 13, everything in Haskell is ultimately based on lambda
expressions, meaning that computation in Haskell is based on function
application and substitution. That is Haskell’s model of computation: the
basic mechanisms that underlie its way of producing results of computational
problems.

Starting in this chapter, you will learn about a dramatically different model

There are many other models of
computation, including models
based on quantum physics
(7 https://en.wikipedia.org/wiki/
Quantum_computing) and even
biology (7 https://en.wikipedia.org/
wiki/Membrane_computing), as well
as models based on mechanisms that
are more obviously computational,
such as cellular automata (7 https://
en.wikipedia.org/wiki/
Cellular_automaton). For more
about models of computation, see
7 https://en.wikipedia.org/wiki/
Model_of_computation.

of computation, embodied in finite automata. Computation in finite automata
involves movement between states in response to symbols read from an input
string.The response to the next input symbol, reading from left to right, depends
on the state and (of course) what the input symbol is. The counterpart towriting
a Haskell program as a sequence of definitions is drawing a finite automaton
as a diagram.

There are different versions of finite automata. The kind youwill learn about
doesn’t produce any output: it just signals acceptance or rejection of an input
string, thereby defining the set containing all of the strings that it accepts. Finite
automata that produce output are called finite-state transducers.

For more about finite-state
transducers, see 7 https://en.
wikipedia.org/wiki/Finite-
state_transducer.

Finite automata have many applications. They are used in digital hardware
design to model and design sequential circuits, whose output depends not
just on the current input but on the history of the input. They are used as
components in compilers, including the Haskell compiler, for decomposing the
text of programs into units like variables, numeric literals, strings, etc. They are
used to model and test communication protocols, for requirements modelling
in software engineering, for phonological and morphological processing in
computational linguistics, asmodels of development inmulti-cellularorganisms
in biology, and to implement simple forms of artificial intelligence in computer
games programming.

Haskell, and its underlying model of computation, is able to express any
computable function. In contrast, while being very useful for certain kinds of
tasks, finite automata have very limited computational power. Addingmemory
to a finite automaton gives a Turing machine, which turns out to have the same
computational power as Haskell. Learning about finite automata will give you
a solid basis for future study of computation using Turing machines.

States, Input and Transitions

A key component of a finite automaton is a finite collection of states. The factFor this reason, finite automata are
often called finite-state machines, see
7 https://en.wikipedia.org/wiki/
Finite-state_machine.

that the collection of states is finite is important, and you’ll see in Chap. 32 that
it leads to a limitation in expressive power. But first, what’s a state?

To understand that, let’s look at an example. Here’s a finite automaton with

The plural of “automaton” is
“automata”. Some authors of
published papers on automata
appear to think that “automata” is
also the singular form, but it isn’t.

two states, shown as circles and labelled 0 and 1:

0 1
a

b

a

b

During computation it will make a series of moves, from one state to another,
in response to what it reads from its input. At each point it will either be in state
0 or in state 1. The arrow pointing to state 0 from the left says that its start state
is state 0.

In some books, the start state is
called the initial state.

The arrows between states are called transitions, and they are labelled with
the input symbol that causes the automaton to move from the state at the
beginning of the arrow to the state at the end of the arrow. So if it is in state 0,

https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Membrane_computing
https://en.wikipedia.org/wiki/Membrane_computing
https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Finite-state_transducer
https://en.wikipedia.org/wiki/Finite-state_transducer
https://en.wikipedia.org/wiki/Finite-state_transducer
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

States, Input and Transitions
283 27

there are two possibilities: if the next symbol in the input is a then it will move
to state 1; but if the next symbol is b then it will stay in state 0.

Let’s see how that works, for the input string ab. We’ll use the colour grey to
indicate the current state, and a fat arrow for the last transition. The automaton
starts in its start state:

0 1
a

b

a

b

Reading a, the first input symbol, causes it to move to state 1:

0 1
a

b

a

b

When it reads b, the second and final input symbol, it follows the looping
transition labelled with b and stays in state 1:

0 1
a

b

a

b

By looking at this computation and a few others, you can see that the
automaton will be in state 1 iff it has read at least one a. That is, state 1
corresponds to it “remembering” that it has read at least one a, while state
0 corresponds to it “remembering” that it hasn’t read a yet. This automaton
doesn’t keep track of how many times it has read b, or how many times it has
read a after reading it once.

Let’s look at a slightly more interesting example:

0 1 2
a a

a

b b b

This automaton has two accepting states, state 1 and state 2, which are drawn In some books, accepting states are
called final states. That terminology
is a little misleading because the
computation can continue after a
final (i.e. accepting) state is reached.

using double circles. If computation ends in one of these states, the input string
is accepted; otherwise it is rejected.

Doing a computation with the input babaaba leads to the following series
of moves, starting in state 0:

0 1 2
a a

a

b b b

27

284 Chapter 27 · Finite Automata

Read b, with remaining input abaaba:

0 1 2
a a

a

b b b

Read a, with remaining input baaba:

0 1 2
a a

a

b b b

Read b, with remaining input aaba:

0 1 2
a a

a

b b b

Read a, with remaining input aba:

0 1 2
a a

a

b b b

Read a, with remaining input ba:

0 1 2
a a

a

b b b

Read b, with remaining input a:

0 1 2
a a

a

b b b

Some Examples
285 27

Read a, with no input remaining:

0 1 2
a a

a

b b b

The input babaaba is accepted because state 1 is an accepting state.
Looking at this example input and others, and considering the structure of

the automaton, you can see that:

• State 0 corresponds to it having read a some number of times that is divisible
by 3;

• State 1 corresponds to it having read a some number of times that gives
remainder 1 when divided by 3; and

• State 2 corresponds to it having read a some number of times that gives
remainder 2 when divided by 3.

Again, this automaton doesn’t keep track of howmany times it has read b. Since
states 1 and 2 are the accepting states, it will accept any string of as and bs in
which the number of as is not divisible by 3.

These examples show that a finite automaton’s states are its memory. But
the memory isn’t able to store numbers, or characters, or lists. It is limited to
remembering certain things about the input that it has read. What those things
are depends on the number of states and the arrangement of transitions.

A finite automaton is normally defined using a diagram showing the states
and the transitions between states. The states are often labelled as in the
examples above; the labels are just used to name the states, and the choice
of names doesn’t matter. Transitions are always labelled with the input symbol
that triggers the transition.Moving along a transition is only possible if the next
symbol in the input is the one labelling the arrow. Then moving to the target
state consumes that symbol, leaving the remaining symbols to be read during
later steps in the computation.

Each finite automaton partitions the set of all possible input strings into
two subsets: the strings that it accepts and the strings that it rejects. The set of
strings that a finite automatonM accepts is called the language accepted byM , In some books, L(M) is called the

language recognised byM .written L(M). The language accepted by a finite automaton is often an infinite
set, even though its set of states and everything else about it is finite.

Some Examples

Here are some further simple examples, to help you develop your intuition.
The following finite automaton accepts strings composed of as with no bs.

That is, L(M1) is the set of all strings composed of as and bs, including the
empty string, that contain no bs.

M1: q0 q1

a

b
b

a

The following finite automaton accepts the string abc and nothing else. That
is, L(M2) = {abc}.

27

286 Chapter 27 · Finite Automata

M2:
a b c

b,c

a,c a,b
a,b,c

a,b,c

Notice that some of the transitions in M2 have labels like a, b. That’s a
convenient way of writing two transitions, one with label a and one with label
b. The state at the bottom is a dead end, or black hole: once the automaton isThe terminology “black hole” is by

analogy with black holes in relativity
theory, from which not even light
can escape, see 7 https://en.
wikipedia.org/wiki/Black_hole.

in that state, there are no transitions leading to another state. The states inM2
have no labels, and that’s okay as long as you don’t need to refer to them later.

This finite automaton accepts strings that start and end with an a separated
by an even number (possibly 0) of bs:

M3: 0 1 2

3

4

a a

b b

b
a

a,b

a,b

This finite automaton accepts strings of binary digits that have odd parity,
i.e. contain an odd number of 1s:

Parity checking is used to detect
errors in data storage and
transmission, see 7 https://en.
wikipedia.org/wiki/Parity_bit. When
data is stored or transmitted, a parity
bit is added and set to 0 or 1 in order
to make the parity of the data plus
parity bit odd or even, according to
the parity scheme being used. If the
parity is later found to be wrong,
then one bit—actually, an odd
number of bits—has been reversed.

M4: q0 q1

0

1

1

0

This finite automaton accepts strings that alternate between a and b:

M5:

a

b

b

a

a

b

a

b

b

a

a,b

Deterministic Finite Automata

All of the examples of finite automata above are deterministic, meaning that
movementbetween statesduring computation is completely fixed (“determined”)
by the input string, with no choices between alternatives. A finite automaton is
deterministic if:

https://en.wikipedia.org/wiki/Black_hole
https://en.wikipedia.org/wiki/Black_hole
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Parity_bit

Some More Examples
287 27

• it has one start state;
• it has exactly one transition from each state for each input symbol; and
• it has no ε-transitions. (These are transitions that consume no input; they The Greek letter ε is pronounced

“EPsilon” in American English and
“epSEYElon” in British English. ε
stands for the empty string.

will be introduced in Chap. 29, when wemove on to non-deterministic finite
automata, so don’t worry about them now.)

Note that multiple accepting states are allowed.
A finite automaton that is deterministic is called a deterministic finite

automaton or DFA.
Because of the requirement that there is exactly one transition from each

state for each input symbol, we have to be clear about which input symbols are
allowed by each DFA.Most of the DFAs above allow the input symbols a and
b, withM2 also allowing c, while the parity checking DFAM4 allows the input
symbols 0 and 1. The set of input symbols that are allowed by a DFA is called
its alphabet, and it is required to be finite. If � is the alphabet of a DFA M , The upper case Greek letter � is

pronounced “Sigma”. For any set �,
�∗ (pronounced “Sigma-star”) is the
set of strings built from the elements
of �, including the empty string.

then L(M) is a subset of �∗, the set of strings (including the empty string) over
�.

Some More Examples

The following examples of DFAs are a little more interesting than the ones
above. Try drawing the diagram for each of them yourself after reading the
description but before looking at the answer! If you need a hint, peek at the
number of states and then try filling in the transitions yourself.

The following DFA, whose alphabet is � = {a, b}, accepts a string iff it
contains aaa. That is, L(M6) = {xaaay ∈ �∗ | x, y ∈ �∗}: The notation for strings in

Mathematics is simpler than it is in
Haskell: we write xaaay for the string
x followed by three occurrences of
the symbol a, followed by the string
y. In Haskell, this would be
x ++ "aaa" ++ y. Later, we’ll write an

for n repetitions of a; in Haskell, this
would be replicate n 'a'.

M6: 0 1 2 3
a

b

a

b

a

b

a,b

The followingDFA, whose alphabet is� = {a, b}, accepts a string iff it ends
with aba. That is, L(M7) = {xaba ∈ �∗ | x ∈ �∗}:

M7: 0 1 2 3
a

b

b

a

a

b

a

b

The followingDFA,whose alphabet is� = {a, b}, accepts a string iff it either
begins or endswith ab, soL(M8) = {abx ∈ �∗ | x ∈ �∗}∪{xab ∈ �∗ | x ∈ �∗}:

27

288 Chapter 27 · Finite Automata

M8: 0

1 2

3 4 5

a

b

a

b
a, b

a

b a

b

a

b

The followingDFAaccepts binary numbers that are divisible by 3, including
the empty string (representing the number 0):

M9: 0 1 2

0

1

1

0

0

1

To understand M9, think about what the states represent: if M9 is in state 0,
what is it “remembering” about the input so far? And what is the relationship
between a binary number b and the binary numbers b0 and b1?

How to Build a DFA

Suppose you are asked to give a DFA that accepts a certain language. How
should you proceed? We’ll use the following example:

L = {x ∈ {0, 1}∗ | x contains an even number of 0s and an odd number of 1s}
The first and most important step is to think about what features of the

input the DFA will need to remember. Being in state q after having read x
versus being in state r after having read y is a DFA’s way of remembering
something that distinguishes x and y. What are the things that distinguish one
string from another that are important?

In our example, there are two things that are important: the number of 0s in
the input and the number of 1s. The order of the input symbols is unimportant;
we’re just interested in how many of each kind of symbol is present. In fact, the
exact numbers of 0s and 1s don’t matter, just whether they are even or odd.

To remember whether the DFA has read an even number or an odd number
of 0s, it needs two states: one for even numbers of 0s, and the other for odd
numbers of 0s. Likewise for even and odd numbers of 1s. To remember both
of these features simultaneously, it needs four states:

• has read an even number of 0s and an even number of 1s;
• has read an even number of 0s and an odd number of 1s;
• has read an odd number of 0s and an even number of 1s; and
• has read an odd number of 0s and an odd number of 1s.

Those will be the states of the DFA. The start state is the first one since before
reading any input the DFA has read an even number (namely 0) of 0s and 1s.

How to Build a DFA
289 27

The second state will be the only accepting state, according to the definition of
the language L. Let’s start by writing down those states:

even 0s
even 1s

even 0s
odd 1s

odd 0s
even 1s

odd 0s
odd 1s

Now that you have the states, you can fill in the transitions, proceeding
systematically. Suppose the DFA is in the start state, meaning that it has read
an even number of 0s and an even number of 0s.What should happen if it reads
another 0? Correct! It has now read an odd number of 0s and an even number
of 1s, so it should move to that state. And if it instead reads another 1, that
makes an even number of 0s and an odd number of 1s. That gives:

even 0s
even 1s

even 0s
odd 1s

odd 0s
even 1s

odd 0s
odd 1s

1

0

Continuing in the same way with the other three states gives the final result:

even 0s
even 1s

even 0s
odd 1s

odd 0s
even 1s

odd 0s
odd 1s

0

1

0

1

0

1

0

1

An alternative (BAD!) way to proceed is to start drawing immediately,
without thinking about how many states you need or what they represent.
Draw the start state, and the transitions from there to other states:

0

1

27

290 Chapter 27 · Finite Automata

Then draw some more transitions to other states:

0

1

0

1

0

1

Stop when you’re so confused that you can’t think of any more transitions to
add:

0

1

0

1

0

1

0 1 0
1

0
11 0

0

1

0

1

0

1

0

1

It’s possible to produce a correct DFA by proceeding this way—the one
above is an example—but it’s error-prone and the result is likely to be larger
than necessary and hard to understand.

Black Hole Convention

When building a DFA, it’s often necessary to include non-accepting black hole
states from which there is no way of reaching an accepting state. An example is
the state at the bottom of the diagram forM2, which accepts only the string abc:

Black Hole Convention
291 27

M2:
a b c

b,c

a,c a,b
a,b,c

a,b,c

Under the black hole convention, such states can be omitted to simplify the
diagram. This leads to a diagram in which there is at most one transition from
each state for each symbol of the alphabet, rather than exactly one:

M2:
a b c

In aDFA, one transition from every state is required for every symbol of the
alphabet. The transitions that are absent when a black hole is omitted can easily
be recreated by adding an additional state with all of the missing transitions
leading to that state.

The DFAsM3, which accepts strings that start and end with an a separated
by an even number of bs, andM5, which accepts strings that alternate between
a and b, are also less cluttered and easier to understand when the black hole is
omitted:

M3: 0 1 2

3

4

a a

b b

b
a

a,b

a,b

0 1 2

3

a a

b b

⇒

M5:

a

b

b

a

a

b

a

b

b

a

a,b

a

b

b

a

a

b

⇒

Except where otherwise specified, we’re going to adopt the black hole
convention when drawing DFA diagrams to make them simpler.

27

292 Chapter 27 · Finite Automata

Exercises

1. What language is accepted by this DFA?

a

b

a

b

a

b

a

b

a

b

a,b

a,b

a,b

2. Draw a DFA that accepts the set of strings over the alphabet {a, b, c} that
start with a and end with either a or c.

3. Draw a DFA that accepts the set of binary numbers that are divisible by 4,
including the empty string.

4. Draw a DFA that accepts the set of binary numbers that are divisible by 2,
not including the empty string.

5. Draw aDFAwith alphabet� = {0, 1} that implements a combination lock
with combination 1101. That is, it should accept the language {x1101 ∈ �∗ |
x ∈ �∗}.

6. GiveaDFAwith fewer states that accepts the same languageas the followingThere are several algorithms for
transforming a DFA into a minimal
DFA that accepts the same language,
see 7 https://en.wikipedia.org/wiki/
DFA_minimization.

DFA:

0

1 2

3 4

0

0

1

1

0

0

0

7. Draw a DFA that accepts the set of binary numbers that are divisible by 3
and have odd parity.

8. Explain how a DFA can accept an infinite language. Can you easily tell
whether the language accepted by aDFAwill be finite or infinite by looking
at its structure?

https://en.wikipedia.org/wiki/DFA_minimization
https://en.wikipedia.org/wiki/DFA_minimization

293 28

Deterministic Finite Automata
Contents

Diagrams and Greek Letters – 294

Deterministic Finite Automata, Formally – 294

Complement DFA – 297

Product DFA – 298

SumDFA – 301

Exercises – 302

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_28

28

294 Chapter 28 · Deterministic Finite Automata

Diagrams and Greek Letters

The examples of deterministic finite automata in the last chapter were given
in the form of simple diagrams, with states drawn as circles and transitions
drawn as arrows between the circles. With a diagram, it’s pretty easy to try out
examples of input strings to see what happens—provided the diagram isn’t so
complicated that it resembles a bowl of spaghetti. We’re now going to look at
a mathematical definition of DFAs that is equivalent to giving a diagram, but
phrased in terms of symbols including scary Greek letters. But why bother?

Diagrams, like the onesweuse forDFAs, are excellent as a basis for intuition
and understanding. However, they are a little awkward as a starting point for

On the other hand, a diagram is
sometimes a good way to give the
intuition underlying a proof,
whether the proof is about DFAs or
about something else.

mathematical proofs. It’s particularly hard if you want to prove that something
is impossible: then you need to explain why a diagram of a certain kind can’t
exist.

In Chap. 32, we will prove that DFAs have limited expressibility, meaning
that it’s impossible to construct aDFAthatwill accept certain languages. Before
that, we’ll show howDFAs can bemodified or combined to produce newDFAs
that accept different languages. Explaining how these constructions work using
diagrams is possible. But in order to be really clear, the actual constructions
need to be defined in mathematical terms.

Deterministic Finite Automata, Formally

First, we’ll say what a finite automaton is, and thenwe’ll say whatmakes a finite
automaton deterministic.

Definition. A finite automaton M = (Q, �, δ,S,F) has five components:The Greek letter δ, which is the
lower case version of �, is
pronounced “delta”.

In most books and articles, a finite
automaton is defined as having a
single start state. Our definition is a
useful generalisation.

• a finite set Q of states;
• a finite alphabet � of input symbols;
• a transition relation δ ⊆ Q × � × Q;
• a set S ⊆ Q of start states; and
• a set F ⊆ Q of accepting states.

The states Q − F that are not accepting states are called rejecting states.

This definition fits perfectlywith theway thatwe definedDFAs as diagrams.
The states inQ were the circles in the diagram, and we can only draw diagrams
with a finite number of circles. The symbols in the alphabet � were the labels
on the arrows in the diagram. The start states S were the ones that had arrows
coming into them with no label, and the accepting states F were the ones that
were drawn using double circles. The sets S and F are always finite because
they are subsets of Q, which is finite.

The transition relation δ ⊆ Q × � × Q, which is a set of triples, captures
the arrows in the DFA diagram and their labels. Each triple (q, a, q′) in δ, also
written q

a−→ q′, corresponds to an arrow going from state q to state q′ that is
labelled with the symbol a. The relation δ is finite because Q and � are both
finite.

Definition. A deterministic finite automaton (DFA) is a finite automaton M =
(Q, �, δ,S,F) such that:

• S contains exactly one state, S = {q0}; and

Deterministic Finite Automata, Formally
295 28

• δ is a total function δ : Q × � → Q, which means that for each state q ∈ Q Recall from Chap. 1: a function
δ : Q × � → Q is a relation
δ ⊆ Q × � × Q such that for each
q ∈ Q and a ∈ �, if
(q, a, q′), (q, a, q′′) ∈ δ then q′ = q′′.
It is a total function if for each q ∈ Q
and a ∈ �, there is some q′ such that
(q, a, q′) ∈ δ.

and each input symbol a ∈ �, there is exactly one state q′ ∈ Q such that
q

a−→ q′ ∈ δ.

Again, this definition matches the limitations that were imposed on DFAs
drawn as diagrams on page 287. The first requirement says that the diagram
contains only one start state, and the second requirement says that there is one
and only one transition from each state for each input symbol. It’s convenient
to give the transition function δ in the form of a table, with rows corresponding
to states and columns corresponding to input symbols. Then the second
requirement says that therewill be exactly one state in each position of the table.

There is nothing about ε-transitions,
which were excluded from DFAs on
page 287, because they aren’t allowed
by the definition of finite automaton.
See Chap. 29.

The following DFA from page 285, which accepts strings composed of as
with no bs:

corresponds to (Q, �, δ,S,F) where

Q = {q0, q1}
� = {a, b}
S = {q0} where q0 = q0
F = {q0}

and δ is given by the following state transition table:

δ a b
q0 q0 q1
q1 q1 q1

Notice that any black hole states—in this example the state q1—whether they
are omitted from the diagram according to the black hole convention or not,
need to be included in Q and δ.

Here’s a more complicated example from page 287:

This corresponds to (Q, �, δ,S,F) where

Q = {0, 1, 2, 3, 4, 5}
� = {a, b}
S = {q0} where q0 = 0
F = {2, 5}

28

296 Chapter 28 · Deterministic Finite Automata

and δ is given by the following state transition table:

δ a b
0 1 3
1 4 2
2 2 2
3 4 3
4 4 5
5 4 3

The transition function δ says what happens when a symbol a is read: if we
are in state q and q

a−→ q′ ∈ δ, then the input symbol a is consumed and we
move to state q′. For example, if M8 is in state 1 and the next symbol is b, it

moves to state 2 because 1
b−→ 2 ∈ δ, which corresponds to row 1 and column b

of the state transition table above containing the entry 2. What happens when
M reads a string of symbols, and what it means for M to accept a string, is
explained by the next definition.

Definition. Let M = (Q, �, δ, {q0},F) be a DFA. The transition function δ :
Q × � → Q is extended to a function δ∗ : Q × �∗ → Q on strings over �,
including the empty string ε, as follows:

• for any state q ∈ Q, δ∗(q, ε) = q;
• for any state q ∈ Q, symbol x ∈ � and string s ∈ �∗, δ∗(q, xs) =

δ∗(δ(q, x), s).

A string s ∈ �∗ is accepted byM iff δ∗(q0, s) ∈ F .

The definition of the extended transition function δ∗ is by recursion. The
first case says what it does for the empty string ε. The second case says what it
does for a string xs consisting of a symbol x followed by a string s, in terms of
what it does for s: first move to the state indicated by δ for the symbol x, and
then proceed from there according to δ∗ for s.

You’re used to recursive definitions in Haskell, so this one should be easy
to understand, but let’s look at the example of M8 accepting the string aaab
anyway, one step at a time:

The string aaab ∈ �∗ is accepted because δ∗(0, aaab) = 5 ∈ F .
It’s interesting to look at the sequence of states that are visited by a DFA

during its computation.

Deterministic Finite Automata, Formally
297 28

Definition. Let M = (Q, �, δ, {q0},F) be a DFA, and let s = a1a2 · · · an be a
string in�∗, with ai ∈ � for each 1 ≤ i ≤ n. The trace ofM on s is the sequence
q0 q1 · · · qn of states, where q0 a1−→ q1

a2−→ · · · an−→ qn ∈ δ.

For example, the trace of M8 on aaab is 0 1 4 4 5, as can be seen from the
computation above. The first state in the trace is the start state q0 and the last
state in the trace is the state that is reached when the input string is exhausted.
The string is accepted iff that state is an accepting state.

Finally, there is the notion of a language, and what it means for a language
to be regular:

Definition. Let� be an alphabet. Any set of stringsL ⊆ �∗ is called a language.
The language accepted by a DFA M with alphabet � is the set L(M) ⊆ �∗ of
strings that are accepted by M . A language L is regular if there is some DFA
M such that L = L(M).

All of the languages that appeared in Chap. 27 were regular. As you will see in
Chap. 32, there are languages that are not regular.

Complement DFA

Suppose that you have a DFA M that accepts a certain language L(M). One
of the things you can do withM is to modify it or combine it with other DFAs
to make it accept a different language. By doing a series of steps like this, you
can build a complicated DFA out of very simple DFAs.

Let’s start with a simple modification: changing M so that it accepts the
complement of L(M) with respect to �∗. That is, it should accept the strings
in �∗ that are not accepted byM . That’s easy: just change the accepting states
ofM so that they reject the input, and change the rejecting states ofM so that
they accept the input.

Definition. The complement of a DFA M = (Q, �, δ,S,F) is the DFA M =
(Q, �, δ,S,Q − F). Don’t forget any black hole states

that are omitted fromM ’s diagram
because of the black hole convention:
inM , those states become accepting
states.

The set Q − F is the complement of F with respect to Q, the set of all states of
M .

Then L(M)will be the complement of L(M)with respect to�∗. This shows
that the complement of a regular language is a regular language. In otherwords,
the set of regular languages is closed under complement: taking the complement
of anything in that set gives us something that is also in that set.

Let’s try that out on an example, the DFA on page 288 that accepts binary
numbers that are divisible by 3:

The complement of M9 is the following DFA, which accepts binary numbers
that are not divisible by 3:

28

298 Chapter 28 · Deterministic Finite Automata

M9 accepts the string 1100, which is the binary representation of 12.M9 rejects
1100, but it accepts 1011 (representing 11) and 1101 (representing 13).

Product DFA

Now suppose that you have two DFAs, M and M ′, accepting the languages
L(M) andL(M ′)over the same alphabet�.Howdoyouget aDFAthat accepts
their intersection, L(M) ∩ L(M ′)?

The intuition behind the following product construction is simple: run M
and M ′ in parallel, accepting a given string s ∈ �∗ iff it is accepted by both M
and M ′. If s is accepted by M then s ∈ L(M), and if s is accepted by M ′ then
s ∈ L(M ′), so being accepted by both means that s ∈ L(M) ∩ L(M ′).

Turning that intuition into a DFA that accepts L(M) ∩ L(M ′) is a little
more challenging. What you need is a single DFA that simulates the actions of
M and M ′ running in parallel. The following definition does the job, showing
that the set of regular languages is closed under intersection:

Definition. The product of DFAsM = (Q, �, δ, {q0},F) andM ′ = (Q′, �, δ′,This construction can be extended to
the case where the alphabets ofM
andM ′ are different, see Exercise 5.

{q′
0},F ′) is the DFA

M × M ′ = (Q × Q′, �, δ × δ′, {(q0, q′
0)}, F × F ′)

where the transition function δ × δ′ : (Q × Q′) × � → (Q × Q′) is defined by

(δ × δ′)((q, q′), a) = (δ(q, a), δ′(q′, a)).

According to this definition, the states of M × M ′ are pairs consisting ofThat’s why this is called the product
construction, as in Cartesian product. a state from M and a state from M ′. The product DFA being in state (q, q′)

corresponds to M being in state q and M ′ being in state q′. Then reading a
symbol a ∈ � causes a transition to (δ(q, a), δ′(q′, a)), which corresponds toM
moving to state δ(q, a) andM ′ moving to state δ′(q′, a). Since the start state of
M ×M ′ is (q0, q′

0), and its accepting states are pairs (q, q′) such that q ∈ F and
q′ ∈ F ′, computations ofM ×M ′ correspond exactly toM andM ′ running in
parallel, side by side, and accepting a string only when both M and M ′ would
have accepted it.

Let’s try that out on an example: take M to be the DFA M4 on page 286
which accepts strings of binary digits that contain an odd number of 1s:

and take M ′ to be the following DFA which accepts strings that contain an
even number of 0s:

Product DFA
299 28

The product M × M ′ will have four states: (q0, q0′), (q0, q1′), (q1, q0′), and
(q1, q1′), with start state (q0, q0′) and one accepting state, (q1, q0′).

You can fill in the entries of the state transition table for δ × δ′ using the
definition (δ × δ′)((q, q′), a) = (δ(q, a), δ′(q′, a)), giving

δ × δ′ 0 1
(q0, q0′) (q0, q1′) (q1, q0′)
(q0, q1′) (q0, q0′) (q1, q1′)
(q1, q0′) (q1, q1′) (q0, q0′)
(q1, q1′) (q1, q0′) (q0, q1′)

Alternatively, you can first concentrate on the part of each entry that comes
from M :

δ × δ′ 0 1
(q0, q0′) (q0, q1′) (q1, q0′)
(q0, q1′) (q0, q0′) (q1, q1′)
(q1, q0′) (q1, q1′) (q0, q0′)
(q1, q1′) (q1, q0′) (q0, q1′)

and then fill in the part that comes from M ′:

δ × δ′ 0 1
(q0, q0′) (q0, q1′) (q1, q0′)
(q0, q1′) (q0, q0′) (q1, q1′)
(q1, q0′) (q1, q1′) (q0, q0′)
(q1, q1′) (q1, q0′) (q0, q1′)

Either way, this completes the construction of the DFA for M × M ′:

Let’s seewhat happenswith the input string 1011.We’ll look atwhat all three
DFAs do with this input in order to show thatM ×M ′ is indeed simulating the
actions of M and M ′ running in parallel. We start M in state q0, M ′ in state
q0′, andM × M ′ in state (q0, q0′). The diagram forM ′ is rotated 90◦ to make
it a little easier to see what’s going on.

28

300 Chapter 28 · Deterministic Finite Automata

Read 1, with remaining input 011:

Read 0, with remaining input 11:

Read 1, with remaining input 1:

Read 1, with no input remaining:

The input 1011 is accepted by M , because q1 ∈ F , but it is rejected by M ′,
because q1′
∈ F ′, and by M × M ′, because (q1, q1′)
∈ F × F ′. That’s correct,
because 1011 ∈ L(M) but 1011
∈ L(M) ∩ L(M ′).

Butwait aminute, haven’twe seen theDFAM×M ′ somewhere before?Yes!
It’s exactly the same as the DFA we built on page 289 to accept the language

{x ∈ {0, 1}∗ | x contains an even number of 0s and an odd number of 1s}
except that the names of the states are different.

This shows that it is sometimespossible tobuildDFAs to accept complicated
languages by building separate DFAs that accept simpler languages—in this
case,

{x ∈ {0, 1}∗ | x contains an odd number of 1s}
and

{x ∈ {0, 1}∗ | x contains an even number of 0s}
—and then using the product construction to combine them.

Sum DFA
301 28

Sum DFA

Given DFAsM andM ′ accepting L(M) and L(M ′) over the same alphabet �,
you now know how to produce a DFA that accepts their intersection L(M) ∩
L(M ′). But what if you want a DFA that accepts their union L(M) ∪ L(M ′)?

The same basic idea as in the product construction—of producing a DFA
that simulates M and M ′ running in parallel—works in this case as well. The
only difference is in the set of accepting states. In the case of the intersection
of languages, in order to accept a string we needed both M and M ′ to accept.
Therefore, a state (q, q′) was an accepting state of M × M ′ iff both q was an
accepting state of M and q′ was an accepting state of M ′. In the case of the
union, we need either q to be an accepting state of M or q′ to be an accepting
state of M ′.

Here’s the definition of the revised construction, which shows that the set
of regular languages is closed under union:

Definition. The sum of twoDFAsM = (Q, �, δ, {q0},F) andM ′ = (Q′, �, δ′, The reason why this is called the sum
will become clear in Chap. 31.{q′

0},F ′) is the DFA

M + M ′ = (Q × Q′, �, δ × δ′, {(q0, q′
0)}, F + F ′)

where the transition function δ × δ′ : (Q × Q′) × � → (Q × Q′) is defined by

(δ × δ′)((q, q′), a) = (δ(q, a), δ′(q′, a))

and the set of accepting states is

F + F ′ = {(q, q′) ∈ Q × Q′ | q ∈ F or q′ ∈ F ′}.

Let’s try that out on the same example as for the product construction,where
M accepts strings of binary digits that contain an odd number of 1s:

and M ′ accepts strings that contain an even number of 0s:

The construction of M + M ′ is exactly the same as for the product M × M ′,
except that now (q0, q1′) is the only state that is not an accepting state:

28

302 Chapter 28 · Deterministic Finite Automata

When given the input string 1011, this DFA will follow the same sequence of
steps as M × M ′ did above, ending in the state (q1, q1′). But this time it will
accept, since (q1, q1′) ∈ F + F ′. And that is the correct result, because 1011
contains an odd number of 1s.

Exercises

1. Give the DFA in the middle of page 290 as a 5-tuple.
2. Prove that for any string st, δ∗(q, st) = δ∗(δ∗(q, s), t). Then show that

δ∗(q, sx) = δ(δ∗(q, s), x).
3. Prove that L(M) = L(M) for any DFAM .
4. Construct the product ofM1 on page 285 (which accepts strings composed

of as with no bs) and M6 on page 287 (which accepts strings that contain
aaa).

5. Extend the product construction to work with DFAs having different
alphabets.

6. Construct the sum ofM4 on page 286 (which accepts strings of binary digits
that have odd parity) and M9 on page 288 (which accepts binary numbers
that are divisible by 3).

7. Prove that L(M ×M ′) = L(M)∩L(M ′) and L(M +M ′) = L(M)∪L(M ′)
for any DFAs M and M ′.

8. Starting with M4 on page 286 and M9 on page 288, construct the DFA

M4 × M9 and compare it with the DFAM4+M9 constructed in Exercise 6.
9. Prove that the set of regular languages is closed under set difference.

303 29

Non-deterministic Finite
Automata
Contents

Choices, Choices – 304

Comparing a DFA with an NFA – 304

SomeMore Examples – 307

Non-deterministic Finite Automata, Formally –
308

NFAs in Haskell – 309

Converting an NFA to a DFA – 311

ε-NFAs – 316

Concatenation of ε-NFAs – 320

Exercises – 321

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_29

29

304 Chapter 29 · Non-deterministic Finite Automata

Choices, Choices

Should you take the lemon cake or the crème brûlée? Or, consider a more
important decision: you’re lost in the mountains in a blizzard without a GPS,
and you’re wondering whether to take the path to the left or to the right. It’s
sometimes hard to decide. What if you could decide not to decide: try all of the
possible choices, and see what happens in each case?

The restrictions built into the definition of DFAs meant that no decisions
are required: there is one state to start from, and there is always one transition
available from every state for each input symbol. Relaxing these restrictions
gives a non-deterministic finite automaton (NFA), which can have more than
one start state and where there can be any number of transitions—including
zero—from any state for any input symbol.

One way of thinking of the operation of an NFA is that it offers many
choices, and a series of decisions is required during computation. This leads to
different possible computations, having potentially different outcomes: accept
or reject. The NFA accepts an input if at least one series of decisions leads it to
accept.

Equivalently, you can think of it trying all of the possible choices simultane-
ously, and accepting an input if at least one of them results in it finishing in an
accepting state. As you will see, in such a computation it will always be in a
set of states, with the available transitions from those states and the next input
symbol dictating which set of states comes next.

Creating an NFA that accepts a given language is often much easier than
creating a DFA that does the same thing. That makes sense: it’s like being
able to decide not to decide, trying all of the possible choices and taking the
one that works out best. But surprisingly, it turns out that non-determinism
actually gives no additional power: every NFA can be converted to a DFA thatNFAs and the proof that every NFA

can be converted to an equivalent
DFA—and the Pumping Lemma in
Chap. 32—are due to 1976 Turing
Award winners Michael Rabin
(1931−), see 7 https://en.wikipedia.
org/wiki/Michael_O._Rabin, and
Dana Scott (1932−), see 7 https://en.
wikipedia.org/wiki/Dana_Scott.

accepts the same language! In fact, you’ll see that even adding a bit more non-
determinism toNFAs in the formof ε-transitions,which give the ability tomove
freely between states without consuming input symbols, gives no additional
power.

Comparing a DFA with an NFA

Recall the following DFA from page 287 which accepts a string iff it contains
aaa:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

Here’s an NFA that accepts the same language:

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Dana_Scott
https://en.wikipedia.org/wiki/Dana_Scott

Comparing a DFA with an NFA
305 29

You can immediately see that M ′
6 is simpler than M6, since it lacks the

backwards transitions. And it’s not a DFA because there are two transitions There are no transitions inM ′
6 from

states 1′ and 2′ for the symbol b. If
M ′

6 were a DFA then they would be
filled in according to the black hole
convention, but for NFAs the same
effect is achieved by just leaving
them out.

from state 0′ for the symbol a.
Let’s see what M6 and M ′

6 do when they read the input abaaaba. We’ll
compare the two computations, side by side, to get a feel for how an NFA
works, how it compares with a DFA that accepts the same language, and the
idea behind the design of M ′

6.
Each one starts in its start state:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

Read a, with remaining input baaaba.M6 has no choice, moving to state 1.M ′
6

can stay in state 0′ or move to 1′; it tries both options at the same time:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

Read b, with remaining input aaaba. Again,M6 has no choice, moving to state
0. From state 0′,M ′

6 can stay in state 0′. But from state 1′ there is no transition
for b so this computation path is aborted, shown below as the (non-existent)
transition on b running into a brick wall. That leaves state 0′ as the only option:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

b

Read a, with remaining input aaba. M6 moves to state 1 again. M ′
6 has two

options, and again it tries both:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

Read a, with remaining input aba. M6 moves to state 2. M ′
6 now has three

options—from state 0′ it can either remain in 0′ or move to 1′, and from state
1′ it can move to 2′—so it tries all three:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

Read a, with remaining input ba.M6 moves to state 3, andM ′
6 has four options:

29

306 Chapter 29 · Non-deterministic Finite Automata

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

Read b, with remaining input a. M6 remains in state 3. From states 0′ and 3′,
M ′

6 has looping transitions for b. But from 1′ and 2′ there is no transition for
b, so those computation paths are aborted:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

b b

Read a, with no input remaining. M6 remains in state 3, while M ′
6 has three

choices:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

The input abaaaba is accepted byM6 because it ended in an accepting state. It
is also accepted byM ′

6, because one of the states it ended in—namely 3′—is an
accepting state.

You’ve just seenhowanNFAsimultaneously tries all possible computations,
meaning that it is always in a set of states. Another way of understanding what
has just happened with M ′

6 is to focus on the trace 0′ 0′ 0′ 1′ 2′ 3′ 3′ 3′ that led
it to finish in state 3′ and so to accept abaaaba. In this computation path, M ′

6
began by following the looping transition from 0′ twice on the first two input
symbols ab before following transitions on the subsequent input symbols aaa
to 3′, where it remained on the final two input symbols ba.

Focusing just on this trace, it feels likeM ′
6 waitedpatiently in state 0

′ until the
next three input symbols were aaa, at which point it cleverly took the transition
to 1′ in order to eventually reach 3′ and acceptance. But no lookahead to see
what’s coming in the rest of the input was involved, and of course M ′

6 is not
being patient or clever. By pursuing all possible choices in parallel, M ′

6 will
accept if any series of choices leads to acceptance, and this trace is just the one
that worked.

Nevertheless, there’s noharm in thinking thisway, especiallywhendesigning
NFAs. In fact, that’s the thinking behind the design of M ′

6: state 0′ and its
looping transition represents “wait patiently for aaa”, with the series of a-
transitions from 0′ to 3′ corresponding to “found aaa”. Finally, state 3′ and its
looping transition represents “having found aaa, hang around in an accepting
state until the input is finished”. It doesn’t matter how the NFA decides tomake
the right series of transitions, since it tries all of them.What is important is only
whether the right series of transitions is possible, and—just as important—that
there is no series of transitions that will lead it to accept an incorrect input.

Some More Examples
307 29

Some More Examples

Here are some more DFAs from Chap. 27, along with a simpler NFA that
accepts the same language.

The following DFA from page 287 accepts a string iff it ends with aba:

M7: 0 1 2 3
a

b

b

a

a

b

a

b

Here’s an NFA that accepts the same language:

M′
7: 0 1 2 3

a

a,b

b a

The backward transitions and one of the looping transitions inM7 are required
to keep track of how much of the string aba was contained in the last three
input symbols read. In M ′

7, these are replaced by a looping transition on the
start state for both input symbols to allow it to “wait patiently” until it’s time
to read the last three symbols of the input, accepting if they are aba.

The following DFA from page 287 accepts a string iff it either begins or
ends with ab:

M8: 0

1 2

3 4 5

a

b

a

b a,b

a

b a

b

a

b

Here’s an NFA that accepts the same language:

M8:

a0 a1 a2

b0 b1 b2

a b a,b

a,b

a b

This is our first example of an NFAwith more than one start state. In this case,
there are no transitions between the “top half” and the “bottom half” of M ′

8,
but not all NFAs with multiple start states have that property. The top half
is responsible for accepting if the input starts with ab, and the bottom half is
responsible for accepting if it ends with ab. If either one accepts, then the input
is accepted.

29

308 Chapter 29 · Non-deterministic Finite Automata

Exercise 27.5 asked you to draw a DFA with alphabet � = {0, 1} that
implements a combination lock with combination 1101, accepting the language
{x1101 ∈ �∗ | x ∈ �∗}. The solution is a little complicated because of the need
to keep track of how much of the combination has already been read, partially
backtracking when it turned out that some of the input was not actually part of
the combination after all. Here’s a simple NFA that does the job, waiting until
it’s time to read the last four symbols of the input and then accepting if they are
1101:

1

0,1

1 0 1

Non-deterministic Finite Automata, Formally

There’s no need to give a definition of a non-deterministic finite automaton
because the definition of a finite automaton on page 294 as a five-tuple
(Q, �, δ,S,F) is exactly what is required. Some NFAs are DFAs because theyThat is, non-deterministic finite

automata includes both finite
automata that are deterministic and
those that are not deterministic.
Make sure that you understand this
point! The terminology is
unfortunately not very helpful.

obey the restrictions in the definition of DFAs on page 294, having a single
start state and a transition relation δ ⊆ Q × � × Q that is a total function
δ : Q × � → Q. In general—and in all of the examples of NFAs in this
chapter—these restrictions are not satisfied.

For example, theNFAM ′
8 on page 307 corresponds to (Q, �, δ,S,F)where

Q = {a0, a1, a2, b0, b1, b2}
� = {a, b}
S = {a0, b0}
F = {a2, b2}

and δ ⊆ Q × � × Q contains the following transitions:

δ = {a0 a−→ a1, a1
b−→ a2, a2

a−→ a2, a2
b−→ a2,

b0
a−→ b0, b0

b−→ b0, b0
a−→ b1, b1

b−→ b2)}
Another way of presenting δ is using a state transition table but with entries
that are sets of states—namely, all of the ones to which there is a transition
from the given state on the given symbol—rather than individual states:

δ a b
a0 {a1} ∅

a1 ∅ {a2}
a2 {a2} {a2}
b0 {b0, b1} {b0}
b1 ∅ {b2}
b2 ∅ ∅

This corresponds to viewing it as a function δ : Q×� → ℘(Q), so δ(q, x) ⊆ Q.
If all of the entries in the table are singleton sets and there is a single start state,
then the NFA is a DFA.

You saw above how computation works in NFAs for the case ofM ′
6. Here’s

the formal definition of what happens when an NFA reads a string of symbols,
and what’s required for the string to be accepted:

https://doi.org/10.1007/978-3-030-76908-6_27
https://doi.org/10.1007/978-3-030-76908-6_27

NFAs in Haskell
309 29

Definition. LetM = (Q, �, δ,S,F) be a (non-deterministic) finite automaton.
The transition relation δ ⊆ Q×� ×Q is extended to a function δ∗ : Q×�∗ →
℘(Q) on strings over �, including the empty string ε, as follows: As already mentioned, any DFAM

is also an NFA. For such an NFA,
this definition of δ∗ and acceptance is
consistent with the definitions for
DFAs on pages 296−297 in the sense
that δ∗

NFA(q, s) = {δ∗
DFA(q, s)} and

s ∈ LNFA(M) iff s ∈ LDFA(M),
where the subscripts NFA/DFA refer
to the respective definitions of δ∗ and
L(M).

• for any state q ∈ Q, δ∗(q, ε) = {q};
• for any state q ∈ Q, symbol x ∈ � and string s ∈ �∗,

δ∗(q, xs) =
⋃

{δ∗(q′, s) | q x−→ q′ ∈ δ}.

A string s ∈ �∗ is accepted by M iff
⋃

{δ∗(q, s) | q ∈ S} ∩ F �= ∅.

The language accepted by M is the set L(M) ⊆ �∗ of strings that are accepted
byM .

M′
8:

a0 a1 a2

b0 b1 b2

a b a,b

a,b

a b

The notation makes some parts of this definition a little hard to read, but
the ideas are simple. First, δ∗(q, s) is the set of all states that can be reached
from state q by following a sequence of transitions via the consecutive symbols
in the string s. That is, if s = a1 a2 · · · an then qn ∈ δ∗(q, s) iff q a1−→ q1

a2−→
· · · an−→ qn ∈ δ. The definition of δ∗ is recursive, like the one for the case of
DFAs on page 296. Then s is accepted if at least one of the states in δ∗(q, s) is
an accepting state, for some start state q ∈ S.

Let’s see how that works forM ′
8 when it reads the input string aba, starting

from state b0:

because b0
a−→ b0 and b0

a−→ b1

because b0
b−→ b0 and b1

b−→ b2

because b0
a−→ b0 and b0

a−→ b1 but

b2
a−→

δ∗(b0, aba)
= ⋃{δ∗(q′, ba) | b0 a−→ q′ ∈ δ}
= δ∗(b0, ba) ∪ δ∗(b1, ba)
= ⋃{δ∗(q′, a) | b0 b−→ q′ ∈ δ} ∪ ⋃{δ∗(q′, a) | b1 b−→ q′ ∈ δ}
= δ∗(b0, a) ∪ δ∗(b2, a)
= ⋃{δ∗(q′, ε) | b0 a−→ q′ ∈ δ} ∪ ⋃{δ∗(q′, ε) | b2 a−→ q′ ∈ δ}
= (δ∗(b0, ε) ∪ δ∗(b1, ε)) ∪ ∅

= {b0, b1}
A similar calculation for the other start state, a0, gives δ∗(a0, aba) = {a2}. Then
M ′

8 accepts aba ∈ �∗, meaning that aba ∈ L(M ′
8), because

⋃
{δ∗(q, aba) | q ∈ S} ∩ F = {a2, b0, b1} ∩ {a2, b2} = {a2}

and {a2} �= ∅.

NFAs in Haskell

It’s straightforward to translate the formal definitions above intoHaskell, using
lists to represent sets. We’ll assume that alphabets contain symbols that are
values of Haskell’s Char type, so input strings are values of type String. On
the other hand, we’ll define the type of transitions and other types that involve
states tobepolymorphic on the typeof states, in order to accommodatedifferent
types of states. This will make it easier to define certain constructions on DFAs
and NFAs in Haskell.

type Sym = Char
type Trans q = (q, Sym, q)
data FA q = FA [q] [Sym] [Trans q] [q] [q] deriving Show

29

310 Chapter 29 · Non-deterministic Finite Automata

A value (q,x,q′) of type Trans q represents a transition q
x−→ q′. Then a

value of type FA q represents an NFA, which is a DFA if it has a single start
state and its transition relation is a total function:

isDFA :: Eq q => FA q -> Bool
isDFA (FA qs sigma delta ss fs) =

length ss == 1
&& and [or [(q,x,q') `elem` delta | q' <- qs]

| q <- qs, x <- sigma]
&& and [q' == q'' | (q,x,q') <- delta, q'' <- qs,

(q,x,q'') `elem` delta]

The type of isDFA requires Eq q because testing that the transition relation is a
function involves testing equality of states.

M′
8:

a0 a1 a2

b0 b1 b2

a b a,b

a,b

a b

For example, the NFA M ′
8 on page 307 is represented as follows:

data State = A0 | A1 | A2 | B0 | B1 | B2 deriving (Eq,Show)
qs8' = [A0,A1,A2,B0,B1,B2]
sigma8' = ['a','b']
delta8' = [(A0,'a',A1), (A1,'b',A2), (A2,'a',A2), (A2,'b',A2),

(B0,'a',B0), (B0,'b',B0), (B0,'a',B1), (B1,'b',B2)]
ss8' = [A0,B0]
fs8' = [A2,B2]

m8' :: FA State
m8' = FA qs8' sigma8' delta8' ss8' fs8'

and it isn’t a DFA:

> isDFA m8'
False

The heart of the formalisation of NFAs is the extension of the transition
relation δ to a function δ∗ : Q × �∗ → ℘(Q) on strings, which is defined by
recursion. Here’s the same definition in Haskell, where δ∗ is written star δ:

star :: Eq q => [Trans q] -> q -> [Sym] -> [q]
star delta q "" = [q]
star delta q (x:xs) =

nub (concat [star delta q' xs
| (r,y,q') <- delta, r == q, x == y])

In a DFA, the result of star will always be a singleton.
Based on δ∗ is the definition of when a string is accepted by an NFA:

accept :: Eq q => FA q -> [Sym] -> Bool
accept (FA qs sigma delta ss fs) xs =

concat [star delta q xs | q <- ss] `intersect` fs /= []as `intersect` bs /= []
gives the same result as
(nub as) `intersect` bs /= [].

We can use these to check the computation for M ′
8 on page 309:

> star delta8' B0 "aba"
[B0,B1]
> accept m8' "aba"
True

The following function is similar to star but it also records the states that
are encountered during computation.

traces :: Eq q => [Trans q] -> q -> [Sym] -> [[q]]
traces delta q "" = [[q]]

Converting an NFA to a DFA
311 29

traces delta q (x:xs) =
nub (concat [map (q:) (traces delta q' xs)

| (r,y,q') <- delta, r == q, x == y])

With traces, you can see which computation traces led to which of the states
in the result of δ∗:

> traces delta8' B0 "aba"
[[B0,B0,B0,B0],[B0,B0,B0,B1]]

which says that the traces were B0 B0 B0 B0 and B0 B0 B0 B1.
Constructions like the product of two DFAs (page 298) can be defined in

Haskell:

This definition uses an as-pattern
fa@(FA qs sigma delta ss fs),
which is pronounced “fa as
FA qs sigma delta ss fs”. If the
input matches
FA qs sigma delta ss fs then the
variables qs, sigma, delta, ss and
fs are bound to the respective
components of the input, while the
variable fa is bound to the whole
input.

productDFA :: (Eq a,Eq b) => FA a -> FA b -> FA (a,b)
productDFA fa@(FA qs sigma delta ss fs)

fa'@(FA qs' sigma' delta' ss' fs')
| not (isDFA fa) || not (isDFA fa')

= error "not DFAs"
| sigma/=sigma'

= error "alphabets are different"
| otherwise

= FA (cpair qs qs') sigma dd [(q0,q0')] (cpair fs fs')
where dd = [((q1,q1'), x, (q2,q2'))

| (q1,x,q2) <- delta,
(q1',x',q2') <- delta', x==x']

[q0] = ss
[q0'] = ss'

where cpair :: [a] -> [b] -> [(a,b)] is the Cartesian product of two lists,
defined on page 272. Notice the type of the result: the product of DFAs having
states of type a and b has states of type (a,b).

Converting an NFA to a DFA

You’ve seen that—at least in some cases—it’s easier to design an NFA than a
DFA that accepts a given language. It may therefore come as quite a surprise
to discover that every NFA M can be converted into a DFA M̂ that accepts
the same language. This means that non-determinism doesn’t actually add any
expressive power: for any NFA M , L(M) = L(M̂) where M̂ is a DFA, so
L(M) is a regular language.

The reason why NFAs seem to be more expressive than DFAs is that
converting anNFAwith n states to an equivalentDFAyields onewith 2n states.
DesigningaDFAwith16, 32or 64 states is a complicatedanderror-proneaffair,
while keeping track of 4, 5 or 6 states in the equivalent NFA is much easier.

The basic idea of the conversion is simple. First, the states of theDFA M̂ are
sets of the states of theNFAM . Each state {q1, . . . , qm} of M̂ corresponds toM That’s why there are 2n of them:

remember that |℘(Q)| = 2|Q|.being in states q1 and · · · and qm simultaneously. You’ve seen how that works
for the computation ofM ′

6 on pages 305−306. Then the transitions of M̂ record
how M moves from being in one set of states to being in another set of states
when reading a symbol. For instance, the last move of M ′

6 in response to an
input of a took it frombeing simultaneously in 0′ and 3′ to being simultaneously
in 0′, 1′ and 3′. It follows that there is a transition {0′, 3′} a−→ {0′, 1′, 3′} in the
DFA M̂ ′

6.

29

312 Chapter 29 · Non-deterministic Finite Automata

Definition. LetM = (Q, �, δ,S,F) be a (non-deterministic) finite automaton.
The powerset construction produces the DFA M̂ = (Q̂, �, δ̂, Ŝ, F̂) where the

The powerset construction is often
called the subset construction, see
7 https://en.wikipedia.org/wiki/
Powerset_construction.

set of states is
Q̂ = ℘(Q),

the transition function δ̂ : Q̂ × � → Q̂ is defined by

Q ∈ Q̂, which is Q in a script font, is
a state of M̂ . We’ll call Q a
superstate to emphasize that it’s a set
of states of M , that is,Q ⊆ Q.

δ̂(Q, a) = {q′ ∈ Q | q ∈ Q, q
a−→ q′ ∈ δ},

the set of start states is
Ŝ = {S} ⊆ Q̂,

and the set of accepting states isSee Exercise 7 for a proof that
L(M) = L(M̂).

F̂ = {Q ∈ Q̂ | Q ∩ F �= ∅} ⊆ Q̂.

M̂ will often contain superstates that are unused in the sense that they
can’t be reached by any series of transitions from its start superstate. Because
the number of superstates is potentially very large, it’s therefore convenient
to construct M̂ “lazily”, starting with its start superstate and adding new
superstates only when they are required as targets of transitions. This process
omits the unreachable superstates.

Let’s see how the powerset constructionworks for theNFAM ′
6 on page 304:

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

We’ll build δ̂ one transition at a time, starting with the start superstate {0′}
which is the set of all of the start states of M ′

6:

δ̂ a b
{0′}

There are transitions in M ′
6 via a from 0′ to both 0′ and 1′, so we add an entry

for {0′} a−→ {0′, 1′} to the table. The superstate {0′, 1′} is new, so we add a new
row for recording its transitions:

δ̂ a b
{0′} {0′, 1′}

{0′, 1′}

The only transition via b from 0′ is back to 0′, so we add an entry for {0′} b−→ {0′}
to the table. The destination superstate {0′} is already there, so we don’t need
to add it:

δ̂ a b
{0′} {0′, 1′} {0′}

{0′, 1′}

https://en.wikipedia.org/wiki/Powerset_construction
https://en.wikipedia.org/wiki/Powerset_construction

Converting an NFA to a DFA
313 29

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,bNow we have to fill in the second row of the table. From 0′, M ′
6 can either

remain in 0′ or move to 1′ when reading the symbol a, while from state 1′ it can
move to 2′. So we add an entry for {0′, 1′} a−→ {0′, 1′, 2′} to the table, and a new
row for {0′, 1′, 2′}:

δ̂ a b
{0′} {0′, 1′} {0′}

{0′, 1′} {0′, 1′, 2′}
{0′, 1′, 2′}

Filling in the second entry in the second row: there is a looping b-transition from Much of the reasoning involved in
filling in this state transition table
repeats the explanation of the
computation of M ′

6 on
pages 305−306. For instance, the
reasoning behind this entry repeats
the second computation step there.
Exceptions are for superstates and
transitions that didn’t arise during
that computation.

0′ but no b-transition from 1′ (this corresponds to a “brick wall”). So we add

an entry for {0′, 1′} b−→ {0′} to the table, and no new row because the superstate
{0′} is already there:

δ̂ a b
{0′} {0′, 1′} {0′}

{0′, 1′} {0′, 1′, 2′} {0′}
{0′, 1′, 2′}

There are a-transitions from0′ to 0′ and 1′, from1′ to 2′, and from2′ to 3′, which
means that we need to add an entry for {0′, 1′, 2′} a−→ {0′, 1′, 2′, 3′}, and a new
row for {0′, 1′, 2′, 3′}. There is a b-transition from 0′ to 0′ but no b-transitions

from 1′ or 2′, so we add {0′, 1′, 2′} b−→ {0′}:

δ̂ a b
{0′} {0′, 1′} {0′}

{0′, 1′} {0′, 1′, 2′} {0′}
{0′, 1′, 2′} {0′, 1′, 2′, 3′} {0′}

{0′, 1′, 2′, 3′}

There are a-transitions from 0′ to 0′ and 1′, from 1′ to 2′, from 2′ to 3′ and
from 3′ to 3′, so we add {0′, 1′, 2′, 3′} a−→ {0′, 1′, 2′, 3′}. There is a b-transition
from 0′ to 0′ and from 3′ to 3′ but no b-transitions from 1′ or 2′, so we add

{0′, 1′, 2′, 3′} b−→ {0′, 3′} and a new row for the superstate {0′, 3′}:

δ̂ a b
{0′} {0′, 1′} {0′}

{0′, 1′} {0′, 1′, 2′} {0′}
{0′, 1′, 2′} {0′, 1′, 2′, 3′} {0′}

{0′, 1′, 2′, 3′} {0′, 1′, 2′, 3′} {0′, 3′}
{0′, 3′}

There are a-transitions from0′ to 0′ and 1′ and from3′ to 3′, sowe add {0′, 3′} a−→
{0′, 1′, 3′} and a new row for the superstate {0′, 1′, 3′}. There is a b-transition

from 0′ to 0′ and from 3′ to 3′, so we add {0′, 3′} b−→ {0′, 3′}:

29

314 Chapter 29 · Non-deterministic Finite Automata

δ̂ a b
{0′} {0′, 1′} {0′}

{0′, 1′} {0′, 1′, 2′} {0′}
{0′, 1′, 2′} {0′, 1′, 2′, 3′} {0′}

{0′, 1′, 2′, 3′} {0′, 1′, 2′, 3′} {0′, 3′}
{0′, 3′} {0′, 1′, 3′} {0′, 3′}

{0′, 1′, 3′}

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

There are a-transitions from 0′ to 0′ and 1′, from 1′ to 2′, and from 3′ to 3′,
so we add {0′, 1′, 3′} a−→ {0′, 1′, 2′, 3′}. There is a b-transition from 0′ to 0′ and
from 3′ to 3′, but no b-transition from 1′ so we add {0′, 1′, 3′} b−→ {0′, 3′}. No
new superstates have been added, so that completes the table:

δ̂ a b
{0′} {0′, 1′} {0′}

{0′, 1′} {0′, 1′, 2′} {0′}
{0′, 1′, 2′} {0′, 1′, 2′, 3′} {0′}

{0′, 1′, 2′, 3′} {0′, 1′, 2′, 3′} {0′, 3′}
{0′, 3′} {0′, 1′, 3′} {0′, 3′}

{0′, 1′, 3′} {0′, 1′, 2′, 3′} {0′, 3′}

M̂ ′
6 will have the 6 superstates listed in the left-hand column of the table.

The 10 remaining superstates can be omitted because they aren’t reachableM ′
6 has 4 states, so there are

24 − 6 = 10 superstates missing. from the start superstate. The accepting superstates are the ones that have
a non-empty intersection with the set {3′} of accepting states in M ′

6, namely
{0′, 1′, 2′, 3′}, {0′, 3′} and {0′, 1′, 3′}. This gives the result:

To avoid clutter, the curly brackets
are omitted from the superstate
labels.

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

Now let’s compare whatM ′
6 and M̂ ′

6 do when they read the input abaaaba.
For M ′

6, the computation is the one shown on pages 305−306. While watching
the progress of the computations, notice that the set of states that M ′

6 is in
always matches the superstate that M̂ ′

6 is in. This begins with their start states:

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

Read a, with remaining input baaaba. M ′
6 can stay in 0′ or move to 1′, while

M̂ ′
6 moves to {0′, 1′}:

Converting an NFA to a DFA
315 29

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

Read b, with remaining input aaaba. From 0′,M ′
6 can stay in 0′, but there is no

b-transition from 1′, so this computation path is aborted, leaving 0′ as the only
option. Meanwhile, M̂ ′

6 moves back to {0′}:

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

b

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

Read a, with remaining input aaba.M ′
6 has two options, and again it tries both.

M̂ ′
6 moves to {0′, 1′} again:

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

Read a, with remaining input aba. M ′
6 has three options: from 0′ it can either

remain in 0′ ormove to 1′, and from 1′ it canmove to 2′. M̂ ′
6 moves to {0′, 1′, 2′}:

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

Read a, with remaining input ba. M ′
6 has four options, and M̂ ′

6 moves to
{0′, 1′, 2′, 3′}:

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

Read b, with remaining input a. M ′
6 has looping b-transitions from 0′ and 3′,

but there are no b-transitions from 1′ or 2′. And M̂ ′
6 moves to {0′, 3′}:

29

316 Chapter 29 · Non-deterministic Finite Automata

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

b b

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

Read a, with no input remaining. M ′
6 has three choices, while M̂ ′

6 moves to
{0′, 1′, 3′}:

M′
6: 0′ 1′ 2′ 3′a

a,b

a a

a,b

̂M′
6: 0′ 0′,1′ 0′,1′,

2′
0′,1′,
2′,3′

0′,3′ 0′,1′,
3′

a

b

a

b

a

b

a

b

a
b

a

b

The input abaaaba is accepted by M ′
6, because one of the states it ended in is

an accepting state, and it’s also accepted by M̂ ′
6.

It’s interesting to compare M̂ ′
6 with the original DFA M6:

M6: 0 1 2 3
a

b

a

b

a

b

a,b

M̂ ′
6 is similar toM6, and its computationabovealmostmatches the computation

of M6 for the same input string on pages 305−306. The difference is that M6
has one accepting state while M̂ ′

6 has three. Since all of the transitions from
the accepting superstates in M̂ ′

6 go to accepting superstates, collapsing them
into a single accepting superstate as in M6 gives an equivalent DFA. They are
distinguished in M̂ ′

6 because each one corresponds to a different combination
of states ofM ′

6.

ε-NFAs

Auseful extension ofNFAs allows transitions between selected states “for free”,
without consuming input symbols. The extra transitions are labelled with ε, the
empty string. An example is the following ε-NFA that accepts the language
{amabnap | m, n, p ≥ 0}:

M: 0 1 2

a

a

b

ε

a

ε-NFAs
317 29

Computation with an ε-NFA is as with a normal NFA, except that when
an ε-transition is encountered, there is a choice between making the transition
or not. Let’s look at whatM does when it reads the input aba.

M starts in its start state 0:

M: 0 1 2

a

a

b

ε

a

Read a, with remaining input ba. There is a looping a-transition on 0, and an
a-transition from 0 to 1. From 1, M can then follow the ε-transition to 2 or
stay in 1:

M: 0 1 2

a

a

b

ε

a

Read b, with remaining input a. There is a looping b-transition on 1, but no
b-transitions from 0 or 2. However, there is an ε-transition from 1 to 2 thatM
can take (or not) after the looping b-transition:

M: 0 1 2

a

a

b

ε

a

b b

Read a, with no input remaining. There is a looping a-transition on 2, but no
a-transitions from 1:

M: 0 1 2

a

a

b

ε

a

b

The input aba is accepted, because one of the states it ended in—there is only
one, in this example—is an accepting state.

Formally, an ε-NFA is just like a normal NFA except that the transition
relation allows transitions labelled with ε:

Definition. A non-deterministic finite automaton with ε-transitions (ε-NFA)
M = (Q, �, δ,S,F) has five components:

The requirement that ε �∈ � and the
“type” of δ are the only changes.

• a finite set Q of states;
• a finite alphabet � of input symbols, such that ε �∈ �;

29

318 Chapter 29 · Non-deterministic Finite Automata

• a transition relation δ ⊆ Q × (� ∪ {ε}) × Q;
• a set S ⊆ Q of start states; and
• a set F ⊆ Q of accepting states.

For example, the ε-NFA M above corresponds to (Q, �, δ,S,F) where

It’s important to understand that,
although ε can be used as a transition
label, it’s not a symbol in �!

Q = {0, 1, 2}
� = {a, b}
S = {0}
F = {2}

and δ ⊆ Q × (� ∪ {ε}) × Q contains the following transitions:

δ = {0 a−→ 0, 0
a−→ 1, 1

b−→ 1, 1
ε−→ 2, 2

a−→ 2)}
When presented as a state transition table, δ needs an extra column for ε-
transitions:

δ a b ε

0 {0, 1} ∅ ∅

1 ∅ {1} {2}
2 {2} ∅ ∅

Taking ε-transitions into account in the definition of computation of an
ε-NFA uses the ε-closure 〈〈R〉〉 of a setR of states, consisting ofR together with
all states that can be reached from R by following only ε-transitions. Then, as
in the example ofM above, a computation step via an input symbol x yields not
just the set of states that are destinations of x-transitions from current states
but the ε-closure of that set. In symbols:

Definition. Let M = (Q, �, δ,S,F) be an ε-NFA.
The ε-closure of a set R ⊆ Q of states in M is the smallest set 〈〈R〉〉 ⊇ R ofNote that this covers chains of

ε-transitions, not just individual
ε-transitions.

states such that if q ∈ 〈〈R〉〉 and q
ε−→ q′ then q′ ∈ 〈〈R〉〉.

The transition relation δ ⊆ Q × (� ∪ {ε}) × Q is extended to a function
δ∗ : Q × �∗ → ℘(Q) on strings over �, including the empty string ε, as
follows:

• for any state q ∈ Q, δ∗(q, ε) = 〈〈{q}〉〉;
• for any state q ∈ Q, symbol x ∈ � and string s ∈ �∗,

According to this definition,
δ∗(q, s) = 〈〈δ∗(q, s)〉〉. (Why?)

δ∗(q, xs) =
⋃

{δ∗(q′′, s) | q x−→ q′ ∈ δ and q′′ ∈ 〈〈{q′}〉〉}.

A string s ∈ �∗ is accepted byM iff
⋃

{δ∗(q, s) | q ∈ 〈〈S〉〉} ∩ F �= ∅.

The language accepted by M is the set L(M) ⊆ �∗ of strings that are accepted
byM .

For example, applying the definition of δ∗ toM on page 316

M: 0 1 2

a

a

b

ε

a

ε-NFAs
319 29

for the input string ab starting from state 0 repeats the first two steps of the
computation above:

because 0
a−→ 0 and 0

a−→ 1

because 〈〈{0}〉〉 = {0} and
〈〈{1}〉〉 = {1, 2}

because 0
b−→ , 1

b−→ 1 and 2
b−→

because 〈〈{1}〉〉 = {1, 2}

because 〈〈{1}〉〉 = {1, 2} and
〈〈{2}〉〉 = {2}

δ∗(0, ab)
= ⋃{δ∗(q′′, b) | 0 a−→ q′ ∈ δ and q′′ ∈ 〈〈{q′}〉〉}
= ⋃{δ∗(q′′, b) | q′ ∈ {0, 1} and q′′ ∈ 〈〈{q′}〉〉}
= ⋃{δ∗(q′′, b) | q′′ ∈ 〈〈{0}〉〉}

∪ ⋃{δ∗(q′′, b) | q′′ ∈ 〈〈{1}〉〉}
= δ∗(0, b) ∪ ⋃{δ∗(q′′, b) | q′′ ∈ {1, 2}}
= δ∗(0, b) ∪ (δ∗(1, b) ∪ δ∗(2, b))
= ⋃{δ∗(q′′, ε) | 0 b−→ q′ ∈ δ and q′′ ∈ 〈〈{q′}〉〉}

∪ (
⋃{δ∗(q′′, ε) | 1 b−→ q′ ∈ δ and q′′ ∈ 〈〈{q′}〉〉}

∪ ⋃{δ∗(q′′, ε) | 2 b−→ q′ ∈ δ and q′′ ∈ 〈〈{q′}〉〉})
= ∅ ∪ (

⋃{δ∗(q′′, ε) | q′′ ∈ 〈〈{1}〉〉}
∪ ∅)

= ⋃{δ∗(q′′, ε) | q′′ ∈ {1, 2}}
= δ∗(1, ε) ∪ δ∗(2, ε)
= 〈〈1〉〉 ∪ 〈〈2〉〉
= {1, 2} ∪ {2}
= {1, 2}

M accepts ab because

because 〈〈S〉〉 = 〈〈{0}〉〉 = {0}⋃
{δ∗(q, s) | q ∈ 〈〈S〉〉} ∩ F = δ∗(0, s) ∩ F = {1, 2} ∩ {2} = {2}

and {2} �= ∅.
As with ordinary NFAs, there is a powerset construction for converting

any ε-NFA M to an equivalent DFA M̂ , meaning that ε-transitions provide
no additional expressive power. The construction is very similar to the one
for ordinary NFAs, with exactly the same intuition and the same potentially
exponential increase in the number of states. The only changes that are required
are the addition of ε-closure operations in a few places to take ε-transitions into
account.

Definition. Let M = (Q, �, δ,S,F) be an ε-NFA. The powerset construction
produces the DFA M̂ = (Q̂, �, δ̂, Ŝ, F̂) where the set of states is Obviously, any NFAM is an ε-NFA

that happens to have no
ε-transitions. The result of the
powerset construction forM viewed
as an NFA is the same as the result
forM viewed as an ε-NFA, since
〈〈R〉〉 = R for any R ⊆ Q in the
absence of ε-transitions.

Q̂ = ℘(Q),

the transition function δ̂ : Q̂ × � → Q̂ is defined by

δ̂(Q, a) = {q′′ ∈ 〈〈{q′}〉〉 | q ∈ Q, q
a−→ q′ ∈ δ},

the set of start states is
Ŝ = 〈〈{S}〉〉 ⊆ Q̂,

and the set of accepting states is

F̂ = {Q ∈ Q̂ | Q ∩ F �= ∅} ⊆ Q̂.

Applying the powerset construction toM above—proceeding “lazily” from
the start superstate 〈〈{0}〉〉 = {0} to avoid generating unreachable superstates—
yields the following state transition table:

29

320 Chapter 29 · Non-deterministic Finite Automata

M: 0 1 2

a

a

b

ε

a δ̂ a b
{0} {0, 1, 2} ∅

{0, 1, 2} {0, 1, 2} {1, 2}
∅ ∅ ∅

{1, 2} {2} {1, 2}
{2} {2} ∅

The accepting superstates are the ones that have a non-empty intersection with
the set {2} of accepting states in M , namely {0, 1, 2}, {1, 2} and {2}. This gives
the result:

To avoid clutter, the curly brackets
are omitted from the superstate
labels. Applying the black hole
convention to omit superstate ∅

would further simplify the diagram.

̂M: 0 0,1,2 1,2 2

∅

a

b

a

b a

b a

b

a,b

Concatenation of ε-NFAs

Suppose that you have two ε-NFAs,M andM ′, accepting languagesL(M) and
L(M ′). The availability of ε-transitions makes it easy to construct an ε-NFA
MM ′ that accepts strings composed of a string from L(M) followed by a string
from L(M ′):

L(MM ′) = {xy | x ∈ L(M) and y ∈ L(M ′)}.
MM ′ is built fromM andM ′ by connecting all of the accepting states ofM via
ε-transitions to all of the start states ofM ′:

M M′

⇓

MM′: M M′

ε

ε

ε

ε

The definition of the construction is simpler under the assumption that the
state sets ofM and M ′ don’t overlap.

Exercises
321 29

Definition. Let M = (Q, �, δ,S,F) and M ′ = (Q′, �′, δ′,S′,F ′) be ε-NFAs
such that Q ∩ Q′ = ∅. The concatenation ofM and M ′ is the ε-NFA

MM ′ = (Q ∪ Q′, � ∪ �′, δδ′, S, F ′)

where the transition relation δδ′ : (Q ∪ Q′) × � × (Q ∪ Q′) is defined by

δδ′ = δ ∪ δ′ ∪ {q ε−→ q′ | q ∈ F and q′ ∈ S′}.

For example, the concatenation of the ε-NFA M on page 316

M: 0 1 2

a

a

b

ε

a

and the NFAM ′
8 (which is an ε-NFA without ε-transitions) on page 307

M′
8:

a0 a1 a2

b0 b1 b2

a b a,b

a,b

a b

is the ε-NFA MM ′
8:

0 1 2

a

a

b

ε

a a0 a1 a2

b0 b1 b2

a b a,b

a,b

a b

ε

ε

Concatenation of ε-NFAs, taken together with the powerset construction,
shows that the set of regular languages is closed under concatenation.

Exercises

1. Draw an NFA with alphabet � = {0, 1, 2} that implements a multi-user
combination lock, with combinations 1101, 1220 and 2111 for different
users. That is, it should accept the language

{x1101 ∈ �∗ | x ∈ �∗}∪{x1220 ∈ �∗ | x ∈ �∗}∪{x2111 ∈ �∗ | x ∈ �∗}.

29

322 Chapter 29 · Non-deterministic Finite Automata

2. Draw an NFA with alphabet � = {a, b} that accepts strings which contain
aa followed later by either bbb or another aa. That is, it should accept the
language

{x aa y bbb z ∈ �∗ | x, y, z ∈ �∗} ∪ {x aa y aa z ∈ �∗ | x, y, z ∈ �∗}.
3. LetM = (Q, �, δ,S,F)beanNFA.Applying the complement construction

forDFAsgives anNFAM = (Q, �, δ,S,Q−F). Show thatL(M) �= L(M)

by giving a counterexample.
4. DefineM8 on page 295 inHaskell, and use QuickCheck to test that it accepts

the same strings asM ′
8.

Define M6 on page 287 in Haskell, and use QuickCheck with productDFA
to test that L(M6 × M8) = L(M6) ∩ L(M8).
Hint: Using test inputs of type String with a conditional property that
restricts to strings over a particular alphabet will reject almost all inputs.
Instead, restrict to test inputs over the alphabet ['a','b'] by applying
QuickCheck to a property of the form

forAll (listOf (elements ['a','b'])) prop

where prop :: [Sym] -> Bool.
5. The reverse of an NFA is obtained by reversing the direction of each

transition and exchanging the sets of start and accepting states. Replace
undefined to complete this definition:

reverseNFA :: FA q -> FA q
reverseNFA (FA qs sigma delta ss fs) =

FA qs sigma undefined fs ss

Define M ′
7 on page 307 in Haskell, and use QuickCheck to test that s ∈

L(M ′
7) iff reverse s ∈ L(reverseNFA M ′

7). (See the hint in Exercise 4.) If
m is a DFA, is reverseNFA m a DFA?

6. The black hole convention allows non-accepting black hole states and
transitions to them to be omitted from DFA diagrams. Such diagrams are
not DFAs—there are states for which transitions for some symbols of the
alphabet are missing—until the omitted states and transitions are added.
But they are NFAs. How can that fact be used to add the missing states and
transitions, turning them into DFAs?

7. Let M = (Q, �, δ,S,F) be an NFA, with M̂ = (Q̂, �, δ̂, Ŝ, F̂) being the
DFA that is produced by the powerset construction.
Prove that for any R ⊆ Q and any input string s ∈ �∗, δ̂∗(R, s) =⋃{δ∗(q, s) | q ∈ R}. Hint: Use induction on s.
Use that fact to prove that L(M) = L(M̂).

8. Give ε-NFAs M and M ′ that accept the languages

L = {anbm | n,m ≥ 0} and L′ = {bnam | n,m ≥ 0}
Give their concatenation MM ′, and then apply the powerset construction
to produce M̂M ′.

9. Give an example of what can go wrong with concatenationMM ′ if the state
sets forM and M ′ aren’t disjoint. Give an improved definition.

323 30

Input/Output andMonads

Contents

Interacting with the Real World – 324

Commands – 324

Performing Commands – 325

Commands That Return a Value – 326

do Notation – 329

Monads – 330

Lists as a Monad – 331

Parsers as a Monad – 334

Exercises – 338

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_30

30

324 Chapter 30 · Input/Output and Monads

Interacting with the Real World

All of the Haskell programs you’ve seen so far have been pure mathematical
functions that consume input values andproduceoutput values.Your interaction
with these functions has been by applying them to inputs during an interactive
Haskell session, and looking at the outputs that appear on your screen once
computation is finished. But your past experiencewith computers and software,
including phone apps, websites and computer games, has led you to expect
that Haskell programs must have some way of interacting with the real
world: reacting to keyboard or touchscreen input, displaying images, fetching
information from the internet, playing sounds, accessing the current GPS
position, etc. How does all of that fit in?

Now you’re finally going to learn how to do these things. We’ll concentrate
on input from the keyboard and printing text on the screen, to keep things
simple, but the same ideas apply to other modes of interaction. If you’re
familiar with other programming languages, you’ll probably find that Haskell’s
approach is dramatically different from what you’ve seen before.

The problem with real-world interaction is that it seriously complicates the
business of understanding and reasoning about programs. If an expression’sWhen an computation changes

something in the world, or reacts to a
change in the world, it is said to have
an effect—sometimes known as a
side effect, because it happens “off to
the side”—in addition to its normal
result value, see 7 https://en.
wikipedia.org/wiki/
Side_effect_(computer_science).
Pure functional computations are
effect-free.

value can depend on the results of interaction, it can change if the expression is
evaluated at different times, or in different places, or when data in a file or on
the internet changes. Then simple methods for figuring out what programs do,
starting with basic rules like exp − exp = 0, are no longer valid. And even if
running a test delivered a correct result this afternoon, who knows what it will
do next Wednesday?

For this reason, Haskell carefully separates the domain of pure functional
computation from the domain of real-world interaction. As you’ll see, the
vast majority of Haskell programming—including most programming related
to interaction—is done using the programming concepts that you’ve become
familiar with: recursion, higher-order functions, lists, etc., with types keeping
everything organised. There is a narrow channel throughwhich interactionwith
the real world takes place, in a way that avoids complicating the domain of pure
functional computation.

Commands

We’ll start with a new built-in type, IO (), which you should think of as the type
of commands. So why isn’t it called Command? Partly because IO () is a special
case of something else, as you’ll see shortly: that’s the reason why it’s IO ()
and not just IO. And partly because IO is itself an instance of something more
general, where the name says that these are commands that can do input/output.

One of the simplest commands is to print a character on the screen. This
can be done using the Prelude function

putChar :: Char -> IO ()

So, putChar 'a' is a command to print the character 'a'. Here’s the first
surprise: applying putChar to 'a' doesn’t actually print anything! It produces
a command that—when it is performed—will print 'a' on the screen. You’ll
learn how to cause commands to be performed soon.

Even more exciting than printing one character is printing two characters!
You can produce a command to do that using the Prelude function

>> is pronounced “then”. (>>) :: IO () -> IO () -> IO ()

https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Performing Commands
325 30

For instance,

putChar 'a' >> putChar 'b'

produces the command that, when it is performed, prints 'a' followed by 'b'.
Obviously, >> isn’t commutative: printing 'a' followed by 'b' isn’t the

same as printing 'b' followed by 'a'. However, it is associative: printing 'a'
followed by 'b', and then printing 'c', is the same as printing 'a', followed
by printing 'b' and then 'c'. Its identity is the command that, when it is
performed, does nothing:

done isn’t in the Haskell Prelude, but
it can be defined as done =
return (), using the function
return below (page 327).

done :: IO ()

For instance, printing 'a' and then doing nothing is the same as just printing
'a'. So we have:

(m >> n) >> o = m >> (n >> o)
m >> done = m = done >> m

We can put these together to give a recursive definition of the Prelude
function putStr. Given a string, putStr produces a command that, when it is
performed, will print the string:

putStr :: String -> IO ()
putStr [] = done
putStr (x:xs) = putChar x >> putStr xs

So putStr "ab" produces putChar 'a' >> (putChar 'b' >> done).
A variation on putStr is the Prelude function putStrLn which adds a

newline character at the end:

'\n' is the newline character,
pronounced “backslash-n” or
“newline”, not the beginning of a
lambda expression.

putStrLn :: String -> IO ()
putStrLn cs = putStr cs >> putChar '\n'

Performing Commands

Nowyouknowhowtoput together simple commands tomakemore complicated
commands. But how is a command performed?

When you use Haskell interactively, typing an expression at Haskell’s
prompt causes the expression to be evaluated to produce a value. When that
value is a command of type IO (), the command is performed. What you see
on the screen is then the output produced by the command:

> putStrLn "Hello World!"
Hello World!

An alternative is to create a file Main.hs containing a module Main that
defines a variable main of type IO ():

module Main where
main :: IO ()
main = putStrLn "Hello World!"

Running this using runghc performs the command that is bound to main:

You should type runghc Main.hs
into a command-line terminal
window or “shell”, not into a Haskell
interactive session!

$ runghc Main.hs
Hello World!

This way of performing commands may appear to be too limited to be
useful. But the fact that you canput arbitrarily complex combinations of actions
together to make a single command—which can include input as well as output
commands, see below—means that it’s all you need.

30

326 Chapter 30 · Input/Output and Monads

Why does Haskell make a distinction between producing a command and
performing a command? One reason is that only the latter takes us outside the
domain of pure functional computation. When defining functions like putStr
and putStrLn, you don’t have to bother about interaction with the messy real
world. And this distinction is what allows the same simple reasoning methods
to be applied in this case as everywhere else in Haskell.

Here’s an example. As a general principle, repeated sub-expressions can
always be factored out in Haskell, in the sense that the expression

(1 + 2) * (1 + 2)

is equivalent to the expression

x * x
where x = 1 + 2

with both versions producing 9 : : Int. This principle also applies when the
sub-expression in question is a command, so the expression

putStr "Boing" >> putStr "Boing"

is equivalent to the expressiom

m >> m
where m = putStr "Boing"

with both versions producing a command that, when performed, prints
‘‘BoingBoing’’ on the screen.

Now, if applying putStr to a string would cause the string to be printed
immediately, rather than producing a command that can be performed later,
then the second version would only print ‘‘Boing’’ when where m = putStr
"Boing" is evaluated, with m >> m combining the value produced by putStr,
whatever it is,with itself.Thatwouldviolate the general factorisabilityprinciple.
Separating producing commands from performing them is the key to keeping
things sane and simple.

Commands That Return a Value

Now you know how to do output to the screen. What about input from the
keyboard? And how can input affect what is produced as output?

The first step is to look more carefully at the type of commands. The type
IO () is actually for commands thatmight do some input/output and then return
a value of type (). Recall that () is the type of 0-tuples, for which there is just
one value, also written (). This value isn’t very interesting because it carries no
information, but that’s just fine in this case because there’s no need to return
information from a command that just prints to the screen.

For a command that receives input from the keyboard, there is useful
information tobe returned: namely, the character(s) typed. So, input commands
have types like IO Char. For example:

getChar :: IO Char

is a Prelude command that, when it is performed, reads a character from the
keyboard. Performing the command getChar when the characters "zip" are
typed yields the value 'z', leaving the remaining input "ip" to be read by
subsequent commands. In general, IO a is the type of commands that return a
value of type a. As you’ll see, a isn’t always Char or String, despite the fact that
you can only type characters on the keyboard, because commands can process
what is typed before returning a value.

Commands That Return a Value
327 30

The Prelude function

return :: a -> IO a

is like done : : IO () was for output commands: given a value, it produces the
command that does nothing, and then returns the given value. For example,
performing the command

return [] :: IO String

when the characters "zip" are typed yields the value [], leaving "zip" to be
read by subsequent commands. The function return isn’t very useful on its
own but—like done—it will turn out to be an essential ingredient in functions
that produce input commands.

The analogue of >> for commands that return values is the Prelude function

>>= is pronounced “bind”.(>>=) :: IO a -> (a -> IO b) -> IO b

which is used to put two commands into sequence, passing on the value
produced by the first command for use by the second command.

The type of >>= takes some getting used to. Let’s start with a simple example,
the command

getChar >>= \x -> putChar (toUpper x)

which has type IO (). Performing this command when the characters "zip"
are typed produces the output "Z" on the screen, and leaves "ip" to be read by
subsequent commands. Here it is in action:

> getChar >>= \x -> putChar (toUpper x)
zip
Z>

The first parameter of >>= is getChar, which has type IO Char. Its second
parameter is the function\x ->putChar(toUpperx).Thishas typeChar -> IO()
because toUpper has type Char -> Char and putChar has type Char -> IO ().
So, according to the type of >>=, the whole command has type IO ().

When that command is performed and the characters "zip" are typed:
1. the character 'z' is read by getChar;
2. the function \x -> putChar (toUpper x) is applied to its result 'z', leading

to putChar (toUpper 'z') printing Z;
3. finally, the command yields () as its result.

The characters "ip" haven’t been read so they’re still available to be read
later.

In general: let m : : IO a be a command yielding a value of type a, and let
k : : a -> IO b be a function taking a value of type a to a command yielding a
value of type b. Thenm >>= k : : IO b is the command that, when it is performed,
does the following:

1. first, perform command m, yielding a value x of type a;
2. then, perform command k x, yielding a value y of type b;
3. finally, yield the value y.

A more interesting example of the use of >>= is the Prelude command
getLine which reads a whole line of input from the keyboard. When getLine
is performed, it reads the input using getChar until a newline character is
encountered, returning a list of the characters read up to that point.

30

328 Chapter 30 · Input/Output and Monads

getLine :: IO String
getLine =

getChar -- read a character
>>= \x -> -- and call it x

if x == '\n' -- if it's newline, we're done
then return "" -- so return the empty string

else -- otherwise
getLine -- read the rest of the line

>>= \xs -> -- and call it xs
return (x:xs) -- and then return x:xs

Here it is in action:

> getLine
zip
"zip"

Note the use of recursion in the definition of getLine. But there seems to
be something wrong: since getLine isn’t a function, there’s no parameter that
decreases in size each time. So what’s going on?

The answer is that each time getLine is performed, it consumes keyboard
input, and that causes the list of those characters typed on the keyboard that
are yet to be read to decrease in size. Since that list isn’t explicitly represented
anywhere in the code, neither as a parameter of getLine nor otherwise, the
decrease in size is also not explicit.

Here’s another example: a command echo : : IO () that reads lines of input,
echoing them back in upper case, until an empty line is entered.

echo :: IO ()
echo =

getLine
>>= \line ->

if line == "" then
return ()

else
putStrLn (map toUpper line)

>> echo

For example:

> echo
Haskell is fun
HASKELL IS FUN
oh yes it is
OH YES IT IS

>

The command done that you saw earlier is a special case of return:

done :: IO ()
done = return ()

and the function >> is a special case of >>=:

(>>) :: IO () -> IO () -> IO ()
m >> n = m >>= _ -> n

You saw earlier that >> is associative and done is its identity. Later, you’ll see
that >>= and return have properties that are like associativity and identity, but
different. (Why? Because their types make things a little more complicated!)

do Notation
329 30

do Notation

Commands written using >>= can be made easier to read and write by a change
in notation. With the change, it becomes clearer that what we are doing is
actually fairly simple!

Here’s the Prelude command getLine again:

getLine :: IO String
getLine =

getChar -- read a character
>>= \x -> -- and call it x

if x == '\n' -- if it's newline, we're done
then return "" -- so return the empty string

else -- otherwise
getLine -- read the rest of the line

>>= \xs -> -- and call it xs
return (x:xs) -- and then return x:xs

And now here’s exactly the same thing, written in do notation:

getLine :: IO String
getLine = do {

x <- getChar;
if x == '\n' then

return ""
else do {

xs <- getLine;
return (x:xs)

}
}

Thisnotation replaces the function>>= followedbyanexplicit lambdaexpression
\x -> . . . with something that looks a lot like a binding of x to the result of Partly because of this, >>= is

sometimes referred to as the
“programmable semicolon”.

performing the command before the >>=, with semicolons used for sequencing.
All we’ve done here is to replace

cmd >>= \x -> exp
by

x <- cmd; . . . is pronounced “x is
drawn from cmd in . . .”. Or
alternatively, “let x be the result of
doing cmd in . . .”.

do {
x <- cmd;
exp

}

The braces and semicolon makes the version in do notation look a lot like
programs forperforming sequencesof commands inmore traditional languages.

The same idea works for commands that involve >> instead of >>=, but no
value passing is involved so it’s simpler. For instance, here’s the Prelude function
putStr again:

putStr :: String -> IO ()
putStr [] = done
putStr (x:xs) = putChar x >> putStr xs

The same thing, written in do notation, is

putStr :: String -> IO ()
putStr [] = done
putStr (x:xs) = do {

putChar x;
putStr xs

}

30

330 Chapter 30 · Input/Output and Monads

Here, we’ve replaced

cmd1 >> cmd2

by

do {
cmd1;
cmd2

}

These notations can bemixed, with repetitions of do and nested braces omitted.
For example,

do {
x1 <- cmd1;
x2 <- cmd2;
cmd3;
x4 <- cmd4;
cmd5;
cmd6

}

is equivalent to

cmd1 >>= \x1 ->
cmd2 >>= \x2 ->
cmd3 >>
cmd4 >>= \x4 ->
cmd5 >>
cmd6

Monads

IO is an example of a monad. In order to understand monads, it’s best to firstThe term “monad” was first used in
philosophy, see 7 https://en.
wikipedia.org/wiki/
Monad_(philosophy). That inspired
its use in category theory, see
7 https://en.wikipedia.org/wiki/
Monad_(category_theory). The
Haskell use of the term is an
application of that concept, via its
use in the theory of programming
languages, see 7 https://en.
wikipedia.org/wiki/
Monad_(functional_programming).

understand monoids, a mathematical concept that is related but simpler.
A monoid is just a name for the situation where you have an associative

binary operator � and a value e that is the identity for �. That is:

(x � y) � z = x � (y � z)
x � e = x
e � x = x

You already know lots of examples of monoids: addition with identity 0;
multiplication with identity 1; Haskell’s disjunction (||) with identity False;
conjunction (&&) with identity True; list append (++) with identity []; and
finally, >> with identity done.

Amonad like IO has two functions, >>= and return. They satisfy properties
that are generalised versions of the associative and identity laws:

(m >>= \x -> n) >>= \y -> o = m >>= \x -> (n >>= \y -> o)
return v >>= \x -> m = m[x := v]
m >>= \x -> return x = m

where m[x := v] is m with v substituted for all occurrences of x.For instance, (x * x)[x := 3] is 3 * 3.

https://en.wikipedia.org/wiki/Monad_(philosophy)
https://en.wikipedia.org/wiki/Monad_(philosophy)
https://en.wikipedia.org/wiki/Monad_(philosophy)
https://en.wikipedia.org/wiki/Monad_(category_theory)
https://en.wikipedia.org/wiki/Monad_(category_theory)
https://en.wikipedia.org/wiki/Monad_(functional_programming)
https://en.wikipedia.org/wiki/Monad_(functional_programming)
https://en.wikipedia.org/wiki/Monad_(functional_programming)

Lists as a Monad
331 30

Remembering that >> is a special case of >>= and done is a special case of
return, you can get a feeling for the relationship between these properties and
the monoid laws for >> and done by putting them next to each other, like so:

(m >>= \x -> n) >>= \y -> o
(m >> n) >> o

=
=

m >>= \x -> (n >>= \y -> o)
m >> (n >> o)

return v >>= \x -> m
done >> m

=
=

m[x := v]
m

m >>= \x -> return x
m >> done

=
=

m
m

What you can see from this is that the relationship is close, once you take into
account the way that >>= handles value-passing between one command and the
next. Note that in the first identity law, substitution needs to be used to take
account of the way that the value passed by return v might affect m.

Haskell provides a built-in type class Monad, of which the type constructor
IO is an instance:

As of Haskell version 7.10, the type
class Monad is an extension of a type
class called Applicative which is an
extension of Functor, see 7 https://
wiki.haskell.org/Functor-
Applicative-Monad_Proposal. Since
IO and the other instances of Monad
that you’ll see here are also already
defined in the Haskell Prelude as
instances of those other type classes,
the details are omitted.

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
-- default
(>>) :: m a -> m b -> m b
x >> y = x >>= _ -> y

As with the Functor type class (page 254), instances of Monad are type
constructors, not types. And as usual, there is no way for Haskell to enforce the
monad laws, so it is important to check that they hold for each instance.

Using the Monad type class, you canwrite functions that work in an arbitrary
monad. Such functions will have types of the form Monad m => Probably
more useful for you at this stage is the fact that Haskell provides do notation
for any instance of Monad, not just for IO, as amore convenient way of handling
sequencing and value-passing than direct use of >>=.

Lists as a Monad

Since you’ve probably never heard of monads before, you may be astonished
to learn that lots of things turn out to have the structure of a monad. One
important example is lists:

Type signatures in instance
declarations aren’t allowed in
standard Haskell, so this won’t be
accepted. To allow them, add
{-# LANGUAGE InstanceSigs #-}
at the top of your file.

instance Monad [] where
return :: a -> [a]
return x = [x]

(>>=) :: [a] -> (a -> [b]) -> [b]
m >>= k = [y | x <- m, y <- k x]

To understand these definitions, it will help to forget about commands
consuming input and producing output, and what return and >>= meant in
that context. Think instead of lists as modelling non-deterministic values: values You’ve learned about

non-determinism already in the
context of NFAs. For more about
non-determinism in programming,
see 7 https://en.wikipedia.org/wiki/
Nondeterministic_algorithm.

for which there are different possibilities. For example, the result of tossing
a coin might be a value Heads, or a value Tails, but if the coin hasn’t yet
been tossed and you’re interested in keeping track of the possible outcomes of
future events then you might represent the result as a list of possible outcomes,

https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://en.wikipedia.org/wiki/Nondeterministic_algorithm
https://en.wikipedia.org/wiki/Nondeterministic_algorithm

30

332 Chapter 30 · Input/Output and Monads

[Heads,Tails]. And then look at the types of return and >>= for lists to
figure out what they mean for non-deterministic computations.

The type of return is a -> [a]. It converts the value it is given into a
non-deterministic value, listing that value as its only possibility.

The type of >>= is [a] -> (a -> [b]) -> [b]. This says that it takes as
input a non-deterministic value m of type a, together with a non-deterministic
function k from a to b, and produces a non-deterministic value of type b. The
result collects all of the possible outcomes that can be obtained from k when
applied to possible values of m. The definition above uses list comprehension
but the same function can be defined using recursion:

[] >>= k = []
(x:xs) >>= k = (k x) ++ (xs >>= k)

or using map to produce a list of lists of possible results, which is flattened to a
list using concat:

m >>= k = concat (map k m)

Nowyoucanwritedefinitionsusingdonotation thatmodelnon-deterministic
computations. Here’s an example:

pairs :: Int -> [(Int, Int)]
pairs n = do {

i <- [1..n];
j <- [(i+1)..n];
return (i,j)

}

Given an integer n, this produces the list of all of the possible pairs that can be
obtained by first picking an integer i between 1 and n, then picking an integer
j between i + 1 and n, and then returning the pair (i,j). Let’s see if it works:

> pairs 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

This example can also be written easily using list comprehension:

pairs :: Int -> [(Int, Int)]
pairs n = [(i,j) | i <- [1..n], j <- [(i+1)..n]]

In fact, do notation has a lot in commonwith list comprehension notation, with
the “drawn from” arrows <-, the dependency between multiple generators as in
this example reflecting value passing between subsequent lines in do notation,
and return used for what is the “result part” of a list comprehension. In a way,
the listmonadanddonotation explain list comprehension: if list comprehension
were not built into Haskell, then it could be added as an notational alternative
to do notation in the list monad.

What’smissing in do notation, comparedwith list comprehension, is guards.
But all is not lost! Some monads can be given extra structure that makes it
possible to define something that works like a guard, and the list monad is one
of those.

The extra structure we need is another associative binary operator together
with a value that is the identity for that operator. Extending the Monad type
class with these additional components gives the built-in type class MonadPlus,
with lists as an instance:

Parsers as a Monad
333 30

As of Haskell version 7.10,
MonadPlus is an extension of a type
class called Alternative which is an
extension of Monad, see 7 https://
wiki.haskell.org/Functor-
Applicative-Monad_Proposal, and
guard below is defined in any
instance of Alternative. Lists are
defined as an instance of
Alternative, so the details are
omitted.

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

instance MonadPlus [] where
mzero :: [a]
mzero = []

mplus :: [a] -> [a] -> [a]
mplus = (++)

For lists as an instance of MonadPlus, mzero represents a non-deterministic
value that lists no possible outcomes: the result of a failed computation. The
function mplus combines two non-deterministic values into one, appending the
two lists of alternatives.

Given an instance of MonadPlus, we can define the following function:

guard :: MonadPlus m => Bool -> m ()
guard False = mzero
guard True = return ()

For lists as an instance of MonadPlus, guard False gives a failed computation,
while guard True produces the list [()]:

You need to add type annotations to
these so that Haskell knows how to
output the result. All Haskell can
infer by itself is that
guard (1 > 3) :: m ()
for some instance m of MonadPlus.

> guard (1 > 3) :: [()]
[]
> guard (3 > 1) :: [()]
[()]

This is useful in combinationwith>>. It either causes the rest of the computation
to be aborted or to continue.

> guard (1 > 3) >> return 1 :: [Int]
[]
> guard (3 > 1) >> return 1 :: [Int]
[1]

The use of () in the definition of guard is unimportant: any type, and any
value of that type, would do just as well.

What guard provides in connection with do notation is the real point:

pairs' :: Int -> [(Int, Int)]
pairs' n = do {

i <- [1..n];
j <- [1..n];
guard (i < j);
return (i,j)

}

This gives:

> pairs' 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

and corresponds to the following definition using list comprehension, which
includes a guard:

pairs' :: Int -> [(Int, Int)]
pairs' n = [(i,j) | i <- [1..n], j <- [1..n], i < j]

https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://wiki.haskell.org/Functor-Applicative-Monad_Proposal

30

334 Chapter 30 · Input/Output and Monads

Parsers as a Monad

A parser converts a string of characters into a tree-structured representationYou’ll have already discovered that
Haskell includes a parser, if you’ve
ever encountered an error messages
of the form
“parse error on input . . .” after
making a mistake with Haskell’s
syntax! In a compiler, like the
Haskell compiler, a parser has two
phases, the first being a lexical
analyser—typically implemented
using a DFA—which turns the input
string into a list of tokens, where
tokens are variable names, literals,
symbols, etc. The parser here
combines lexical analysis and parsing
in a single phase.

of the syntactic entity that the string represents. An example is a parser for the
algebraic data type of arithmetic expressions Exp defined on page 144:

data Exp = Lit Int
| Add Exp Exp
| Mul Exp Exp

deriving Eq

for which the showExp function was defined on page 144 to produce familiar
parenthesized notation for such expressions:

> showExp (Add (Lit 1) (Mul (Lit 2) (Lit 3)))
"(1 + (2 * 3))"
> showExp (Mul (Add (Lit 1) (Lit 2)) (Lit 3))
"((1 + 2) * 3)"

A parser for Exp is a function readExp :: String -> Exp that turns a string
into the value of type Exp that the string represents—essentially, computing
the reverse of showExp :: Exp -> String—while rejecting strings that are
syntactically ill-formed:

> readExp "(1 + (2 * 3))"
Add (Lit 1) (Mul (Lit 2) (Lit 3))
> readExp "((1 + 2) * 3)"
Mul (Add (Lit 1) (Lit 2)) (Lit 3)
> readExp "(1 + 2))(* 3)"
*** Exception: no parse

However, that type turns out to be too restrictive when we try to build complex
parsers in stages by combining simpler parsers.

First, because the definition of Exp refers to the type Int, a parser for Exp
will need to use a parser for Int to deal with parts of the input string that
represent integers. And parsing a string like "((1 + 2) * (3 * 4))" that contains
substrings representing smaller values of type Exp—in this case, "(1 + 2)" and
"(3 * 4)" representing Add (Lit 1) (Lit 2) and Mul (Lit 3) (Lit 4), plus
"1" representing (Lit 1), etc.—will require recursive calls to deal with these
substrings. That is, a parser will generally be able to deal with only part of the
input string, leaving the remainder of the string to be parsed by other parsers
or by other calls of the same parser.

Second, parsing a string is not guaranteed to yield a single value of type
Exp. The string might be syntactically ill-formed, like "(1 + 2))(* 3)", so that
parsing produces no value of type Exp. Or the input string might be ambiguous,
requiring the parser to returnmore than one result of type Exp. The entire input
string being ambiguous is normally regarded as an error, but the surrounding
context can often be used to disambiguate candidate parses of substrings.

Taking all of these considerations into account, a parser for Exp will be
a function of type String -> [(Exp,String)]. Applied to a string s, it will
produce a list of possible parses of initial substrings of s, paired with the part
of s that remains after that initial substring is removed. For the string s =
"(1 + 2))(* 3)" the resultwill be[(Add (Lit 1) (Lit 2),")(* 3)")], signifying
that there is one way that an initial substring of s—namely "(1 + 2)"—can be
parsed to give an Exp—namely Add (Lit 1) (Lit 2)—without touching the
remainder of s—namely, ")(* 3)". For the string s′ = "((1 + 2) * (3 * 4))",
the result will be

Parsers as a Monad
335 30

[(Mul (Add (Lit 1) (Lit 2)) (Mul (Lit 3) (Lit 4)), "")]

with the empty string indicating that all of s′ is consumed to produce
Mul (Add (Lit 1) (Lit 2)) (Mul (Lit 3) (Lit 4)).

Parsers in this form can be given the structure of a monad, and do-notation
can be used to combine parsers for simple syntax to give parsers for more
complicated syntax. We prepare the basis for that by giving the type of parsers
as an algebraic data type, together with functions for applying a parser to a
string:

data Parser a = Parser (String -> [(a, String)])

apply :: Parser a -> String -> [(a, String)]
apply (Parser f) s = f s

parse :: Parser a -> String -> a
parse p s = one [x | (x,"") <- apply p s]

where one [] = error "no parse"
one [x] = x
one xs | length xs > 1 = error "ambiguous parse"

There’s an implicit invariant on values of type Parser a, namely that each of
the strings produced is a suffix of the input string. The function parse, which
parses the entire input string, requires a result from apply p s that completely
consumes s and is non-ambiguous.

The following simple examples of parsers, for single characters, don’t require
the use of monads. The function char parses a single character from the input,
if there is one; spot parses a character provided it satisfies a given predicate,
for example isDigit; and token c recognises the character c, if it is the next
character in the input string:

char :: Parser Char
char = Parser f

where f [] = []
f (c:s) = [(c,s)]

spot :: (Char -> Bool) -> Parser Char
spot p = Parser f

where f [] = []
f (c:s) | p c = [(c, s)]

| otherwise = []

token :: Char -> Parser Char
token c = spot (== c)

For example:

> apply (spot isDigit) "123"
[('1',"23")]
> apply (spot isDigit) "(1+2)"
[]
> apply (token '(') "(1+2)"
[('(',"1+2)")]

30

336 Chapter 30 · Input/Output and Monads

To go much further, we need to define Parser as an instance of Monad:

As of Haskell 7.10, the following
additional definitions are required:

instance Functor Parser
where fmap = liftM

instance Applicative Parser
where pure = return

(<*>) = ap

instance Monad Parser where
return x = Parser (\s -> [(x,s)])
m >>= k = Parser (\s ->

[(y, u) |
(x, t) <- apply m s,
(y, u) <- apply (k x) t])

The definition of return converts a value into a parser that produces that value
as result, without consuming any input. The definition of >>= chains together
two consecutive parsers m : : Parser a and k : : a -> Parser b. This deals with
sequencing: situations where a string can be broken into consecutive substrings
that are parsed separately, with the results combined to give the parse of the
combined substrings. Given a string s, m >>= k:
• first applies the parser m to s, producing parses (x, t) where t is the

substring of s that remains after parsing x;
• then applies the parser k x to t, producing parses (y, u)where u is the final

unparsed substring that remains after parsing y; and
• the result is all of the possible parses (y, u).

Note that the parsing done by k, and its result, can depend on the result x of
the first parser; thus the second parser is k x rather than k.

These can be used to define a function, using recursion and do-notation,
that parses a given string appearing at the beginning of the input:

match :: String -> Parser String
match [] = return []
match (x:xs) = do {

y <- token x;
ys <- match xs;
return (y:ys)

}

For example:

> apply (match "abc") "abcdef"
[("abc","def")]
> :{
| apply (do {
| x <- match "abc";
| y <- match "de";
| return (x++y)
| }) "abcdef"
| :}
[("abcde","f")]

Parser can also be defined as an instance of MonadPlus:

As of Haskell 7.10, the following
additional definition is required:

instance Alternative Parser
where

empty = mzero
(<|>) = mplus

instance MonadPlus Parser where
mzero = Parser (\s -> [])
mplus m n = Parser (\s -> apply m s ++ apply n s)

Here, mzero is a parser that always fails, while mplus m n combines the results
of parsers m and n. The MonadPlus structure enables parsing of alternatives,
including the use of guard. For example, here is another definition of the
function spot above, using do-notation and guard:

Parsers as a Monad
337 30

spot :: (Char -> Bool) -> Parser Char
spot p = do {

c <- char;
guard (p c);
return c

}

The functions star and plus are mutually recursive, with star applying The use of star/plus for repetition
of a fragment of syntax and the way
that mplus is used to combine
alternatives come from regular
expressions, see Chap. 31.

a parser to parse zero or more occurrences of a fragment of syntax, and plus
applying a parser to parse one or more occurrences, using do-notation:

star :: Parser a -> Parser [a]
star p = plus p `mplus` return []

plus :: Parser a -> Parser [a]
plus p = do {

x <- p;
xs <- star p;
return (x:xs)

}

These can be applied to parse positive and negative integers:

parseInt :: Parser Int
parseInt = parseNat `mplus` parseNeg

where parseNat = do {
s <- plus (spot isDigit);
return (read s)

}
parseNeg = do {

token '-';
n <- parseNat;
return (-n)

}

For example:

> apply parseInt "-123+4"
[(-123,"+4"),(-12,"3+4"),(-1,"23+4")]

This is an example of ambiguity in parsing. A negative integer is “-” followed
by a natural number, which is a sequence of one ormore digits. There is a choice
of how many digits to parse, so all three options are produced, from longest to
shortest, each paired with the substring that remains.

A parser for Exp can now be built by combining parsers for its three
alternative forms:

parseExp :: Parser Exp
parseExp = parseLit `mplus` parseAdd `mplus` parseMul

where parseLit = do {
n <- parseInt;
return (Lit n)

}

30

338 Chapter 30 · Input/Output and Monads

parseAdd = do {
token '(';
d <- parseExp;
token '+';
e <- parseExp;
token ')';
return (Add d e)

}
parseMul = do {

token '(';
d <- parseExp;
token '*';
e <- parseExp;
token ')';
return (Mul d e)

}

For example:

To get this output, you need to define
Exp to use the default show function,
rather than showExp on page 144:
data Exp = Lit Int

| Add Exp Exp
| Mul Exp Exp

deriving (Eq,Show)

> parse parseExp "(-142+(26*3))"
Add (Lit (-142)) (Mul (Lit 26) (Lit 3))
> parse parseExp "((-142+26)*3)"
Mul (Add (Lit (-142)) (Lit 26)) (Lit 3)
> parse parseExp "(-142+26)*3"
*** Exception: no parse

As the last example shows, this parser requires expressions tobe fullyparenthesized.
It would be easy to add other operators, and refinements to make the notation
less restrictive.

Exercises

1. Give an alternative definition of putStr : : String -> IO () (page 325)
using foldr and map.

2. Write the definition of echo : : IO () (page 328) using do notation.
3. Define a command getInt : : IO Int that reads a string from the keyboard,

like getLine, and converts it to an Int. (Hint: Int is an instance of Read.)
4. Define the Prelude function sequence : : Monad m => [m a] -> m [a] which,

for an arbitrary monad, takes as input a list of actions and returns a
combined action that performs each of those actions, one after the other,
and returns a list of their results.

5. Translate the function pairs (page 332) from do notation to a definition
in terms of >>= in order to understand how the value of i is passed from
i <- [1..n], which produces it, to j <- [(i+1)..n] and return (i,j),
which depend on it.

6. Define the functions star : : Eq q => [Trans q] -> q -> [Sym] -> [q]
(page 310) and accept : : Eq q => FA q -> [Sym] -> Bool (page 310) using
do notation in the list monad.

7. Check that return and >>= in the list monad satisfy the monad laws.
8. Define Maybe as an instance of Monad. (Hint: If it helps, think of functions

of type a -> Maybe b as modelling possibly-failing computations.)
9. The parser for Exp on page 337 doesn’t allow spaces to appear anywhere in

expressions. Modify it to allow zero or more spaces to precede and follow
arithmetic operators.

339 31

Regular Expressions

Contents

Describing Regular Languages – 340

Examples – 340

Simplifying Regular Expressions – 341

Regular Expressions Describe Regular
Languages – 342

Regular Expressions Describe All Regular
Languages – 346

Exercises – 348

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_31

31

340 Chapter 31 · Regular Expressions

Describing Regular Languages

You’ve seenhow todescribe sets of strings—or languages—usingdifferent kinds
of finite automata. An automaton describes a language by accepting the strings
in the language and rejecting the rest. It decides whether or not to accept a
string via a mechanical computation process based on the sequence of symbols
in the string.

You’re now going to learn a notation for describing sets of strings, called
regular expressions, that is algebraic and descriptive rather than mechanicalThis difference is a little like the

distinction between procedural and
declarative knowledge in AI, see
7 https://en.wikipedia.org/wiki/
Procedural_knowledge#
Artificial_intelligence.

and computational. Regular expressions provide a convenient way of writing
down a pattern that all strings in the languagemust fit. For example, the regular
expression (a|b)∗aaa(a|b)∗ describes the set of strings over the alphabet {a, b}
that contain aaa.

Regular expressions look quite different from finite automata, but never-
theless, they have exactly the same expressive power: every regular expression
describes a regular language, and every regular language can be described by aMaybe you already guessed that

from the fact that they are called
regular expressions.

regular expression. The first of these facts will be shown by giving an algorithm
for converting regular expressions to ε-NFAs.The second involves amethod for
convertingNFAs to regular expressions. Putting this together with the previous
chapters gives four ways of describing regular languages: DFAs, NFAs, ε-See Exercise 5 for a fifth way.
NFAs, and regular expressions.

Regular expressionsareused to specify textual patterns inmanyapplications.
One use of regular expressions that you might have encountered already,
but using a different notation, is specifying file names in operating systemSee 7 https://en.wikipedia.org/wiki/

Glob_(programming) for the use of
regular expressions for specifying
filenames. See 7 https://en.
wikipedia.org/wiki/Grep for grep,
which is so well-known that it has
become a verb in English, like
“google”, as in: “You can’t grep dead
trees.”

commands: in Linux, the command rm *aaa* will delete all files having a
name that contains the substring aaa. The Linux grep command is used to
find lines in a file that match a regular expression. Regular expression search
is also commonly provided by text editors, and it is one of the main features of
the Perl scripting language.

Examples

Any regular expressionR over an alphabet � describes a language L(R) ⊆ �∗.
A very simple example is a string of symbols like abaab, which describes the
language L(abaab) = {abaab} containing that string and nothing else. Similar
are the regular expressions ε, describing the language {ε} containing the empty
string, and ∅ which describes the empty language.

The first example already demonstrates one of the operators for building
more complicated regular expressionsoutof simplerones, namely concatenation:
if R and S are regular expressions then RS is a regular expression, with
L(RS) = {xy | x ∈ L(R) and y ∈ L(S)}. The regular expression abaab is
built from the regular expressions a and b with four uses of concatenation.
The two regular expressions being concatenated are simply written next to
each other, without an explicit operator. If L(R) = L(S) = {a, bb} then
L(RS) = {aa, bba, abb, bbbb}, consisting of strings formed by concatenating
a string from L(R) with a string from L(S).

Another operator for building regular expressions is union, written with a
vertical bar: ifR and S are regular expressions thenR|S is a regular expression,R|S is pronounced “R bar S”. Some

books write R.S for concatenation
and/or R + S for union.

with L(R|S) = L(R) ∪ L(S). For example, abaab|bab describes the language
{abaab, bab}. Parentheses can be used for grouping as in (aba|b)ab, which
describes the same language. The regular expression (a|ε)b(a|ε)ab describes
the larger language {abaab, bab, abab, baab} because the choices between a and
ε in the two sub-expressions a|ε are independent.

https://en.wikipedia.org/wiki/Procedural_knowledge#Artificial_intelligence
https://en.wikipedia.org/wiki/Procedural_knowledge#Artificial_intelligence
https://en.wikipedia.org/wiki/Procedural_knowledge#Artificial_intelligence
https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Grep
https://en.wikipedia.org/wiki/Grep

Simplifying Regular Expressions
341 31

The final operator for building regular expressions is closure, which specifies
zero or more repetitions: if R is a regular expression then its closure R∗ is a
regular expression, with L(R∗) = L(R)∗.

R∗ is pronounced “R star”. The
closure operator ∗ is called Kleene
star after the American
mathematician Stephen Kleene
(1909−1994), pronounced “cleanie”,
who invented regular expressions
and the method for converting an
NFA to a regular expression, see
7 https://en.wikipedia.org/wiki/
Stephen_Cole_Kleene.

You’ve seen ∗ before: if � is an alphabet then �∗ is the set of all strings
over �. That is, �∗ is the set of strings of length 0, plus the set of strings of
length 1, plus the set of strings of length 2, etc. If � = {0, 1, 2, 3, 4, 5} then
L(0|1|2|3|4|5) = � and L((0|1|2|3|4|5)∗) = �∗.

In general, if R is a regular expression then R∗ describes the language
containing strings formed by concatenating zero or more strings selected from
R:

R∗ = ε | R | RR | RRR |

For example, (a|bb)∗ describes the infinite language

{ε, a, bb, aa, abb, bba, bbbb, aaa, abba, . . .}.
Notice that again, each of the choices are independent. Choosing a string a
or bb from R and then repeating it zero or more times would give the smaller
language {ε, a, aa, aaa, . . . , bb, bbbb, bbbbbb, . . .}.

Here are some more examples: In applications of regular
expressions, more operators are often
added, for example R+ (one or more
repetitions of R) as an abbreviation
for RR∗ and R? (optional R) as an
abbreviation for R|ε.

• a(a|b)∗b describes the language of strings over {a, b} that begin with a and
end with b.

• (aa)∗|(aaa)∗ describes the language of strings of as with length that is
divisible by 2 or 3. On the other hand, (aa|aaa)∗ describes the language
of strings of as with length ≥ 2 (i.e. with length 2m+ 3n for somem, n ≥ 0).

• (a(b|c))∗ describes strings of even length consisting of a in all even positions
interspersed with b or c in all odd positions, {ax1ax2 . . . axn | x1, . . . , xn ∈
{b, c}, n ≥ 0}.

• 1∗ | (1∗01∗01∗)∗ describes strings of binarydigits containing an evennumber
of 0s.

Let’s have a closer look at the final example. Any string of binary digits
containing an even number of 0s either contains no 0s, or it contains an even
but non-zero number of 0s. The regular expression 1∗ covers the first case.
A string in the second category is composed of substrings containing two 0s
and zero or more 1s. The regular expression 1∗01∗01∗ describes the set of such
substrings—two 0s, separated and surrounded by any number of 1s—and so
(1∗01∗01∗)∗ describes sequences of zero or more such substrings.

Simplifying Regular Expressions

There are many different regular expressions that specify any given language.
Using laws for regular expressions—like the laws of Boolean algebra in
Chap. 22—you can transform a regular expression to an equivalent one, for
example to simplify it. The laws can also be used to show that two regular
expressions are equivalent. They include the obvious associativity and identity
properties of concatenation and union, commutativity of union, and distributi-
vity of concatenation over union. More difficult to remember and use are the
laws for closure, including the ones that relate closure to concatenation and
union.

https://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene

31

342 Chapter 31 · Regular Expressions

R | R = R = R | ∅ R | S = S | R (R | S) | T = R | (S | T)

Rε = εR = R R∅ = ∅R = ∅ (RS)T = R(ST)

(R|S)T = RT | ST R(S|T) = RS | RT
ε∗ = ∅

∗ = ε RR∗ = R∗R (RS)∗R = R(SR)∗
R∗R∗ = (R∗)∗ = R∗ = ε | RR∗ (R | S)∗ = (R∗S∗)∗ = (R∗S)∗R∗ = (R∗ | S∗)∗

Here’s an example of using the laws to simplify the regular expression
(b|aa∗b) | (b|aa∗b)(a|aba)∗(a|aba). The part of the expression that changes
in each step is underlined.

(b|aa∗b) | (b|aa∗b)(a|aba)∗(a|aba)
= (b|aa∗b)ε | (b|aa∗b)(a|aba)∗(a|aba) since R = Rε

= (b|aa∗b)(ε | (a|aba)∗(a|aba)) since RS | RT = R(S|T)

= (b|aa∗b)(ε | (a|aba)(a|aba)∗) since R∗R = RR∗
= (b|aa∗b)(a|aba)∗ since ε | RR∗ = R∗
= (εb|aa∗b)(a|aba)∗ since R = εR
= (ε|aa∗)b(a|aba)∗ since RT | ST = (R|S)T
= a∗b(a|aba)∗ since ε | RR∗ = R∗

Regular Expressions Describe Regular Languages

It turns out that all languages that can be described by regular expressions
are regular. To see why, we need to establish a relationship between regular
expressions and finite automata: that is, we need to show that any regular
expression can be converted to a finite automaton. You’ve learned that all
three versionsof finite automata—DFAs,NFAsand ε-NFAs—have equivalent
expressive power. Since there is a direct way of doing the conversion to ε-NFAs,
that’s what we’ll do.

The conversion method can be seen as a recursive algorithm with six cases,
one for each form of regular expression. The first three cases are the expressions
a for a ∈ �, ε, and ∅. These are the base cases of the recursion since these
regular expressions have no sub-expressions. It’s easy to give the corresponding
ε-NFAs Ma, Mε, and M∅:

Then we need to consider the three operators for combining regular
expressions. Each of these is a different recursive case. We’ll start with concat-
enation since we’ve already seen the relevant construction on ε-NFAs in
Chap. 29.

The regular expression RS is composed of two smaller regular expressions,
R and S. Convert these to ε-NFAsMR andMS that accept the languages L(R)

and L(S). The construction for concatenating ε-NFAs—in which all of the
accepting states of MR are connected via ε-transitions to all of the start states
ofMS—can then be applied toMR andMS , giving an ε-NFAMRS that accepts
the language L(RS):

Regular Expressions Describe Regular Languages
343 31

Combining ε-NFAsMR andMS to give the sum ε-NFAMR|S that accepts
the language L(R|S) is even easier: MR|S is just the union of MR and MS ,
combined into a single ε-NFA, with no change to either machine and no
additional transitions:

An alternative would be to convert MR and MS to DFAs using the powerset
construction, and then apply the sum DFA construction to produce a DFA
that accepts L(R|S).

31

344 Chapter 31 · Regular Expressions

Finally, the regular expression R∗ is built from a smaller regular expressionThe algorithm for converting a
regular expression to an NFA is due
to 1983 Turing Award winner Ken
Thompson (1943−), see 7 https://en.
wikipedia.org/wiki/
Thompson’s_construction.
Thompson was also responsible
(with Dennis Ritchie) for the Unix
operating system, a precursor of
Linux.

R that can be converted to an ε-NFA MR accepting the language L(R). The
following iteration construction, which involves adding a new start state q0
with ε-transitions from q0 to all of the start states of MR and from all of the
accepting states of MR to q0, gives an ε-NFA MR∗ that accepts the language
L(R∗):

The iteration construction—of MR∗ from MR—also shows that the set of
regular languages is closed under iteration.

To show how the conversion method works, let’s try converting the regular
expression 1∗ | (1∗01∗01∗)∗ (describing strings of binary digits containing an
even number of 0s) to an ε-NFA. We’ll start with ε-NFAs for 0 and 1:

We can apply the iteration construction above to constructM1∗ from M1:

Applying the concatenation construction four times to combineM1∗ ,M0,M1∗ ,
M0, and M1∗ gives M1∗01∗01∗ :

https://en.wikipedia.org/wiki/Thompson's_construction
https://en.wikipedia.org/wiki/Thompson's_construction
https://en.wikipedia.org/wiki/Thompson's_construction

Regular Expressions Describe Regular Languages
345 31

Applying the iteration construction to this givesM(1∗01∗01∗)∗ , and then applying
the sumconstruction toM1∗ andM(1∗01∗01∗)∗ gives the final result,M1∗|(1∗01∗01∗)∗ :

This algorithm tends to produce large ε-NFAs that are correct but far from
minimal. A simple two-state DFA that accepts the same language is M ′ on
page 299:

31

346 Chapter 31 · Regular Expressions

Regular Expressions Describe All Regular Languages

The algorithm for converting any regular expression into an ε-NFA establishes
the following implication:

L is described by R implies L is regular

To establish the “backward” implication, we need to show how to convert anyBecause DFAs, NFAs and ε-NFAs
have the same expressive power, it’s
enough to do this for DFAs only, but
the same method works for NFAs
and ε-NFAs too.

finite automaton into a regular expression.
For simple DFAs and NFAs, this can usually be done by inspection. For

example, the NFA

accepts the language that is described by the regular expression (a|b)∗ab(cb)∗.
You can get this expression by starting with the regular expression ab that
describes direct paths from the start state to the final state, and then add (a|b)∗
at the beginning to account for the first loop and (cb)∗ at the end to account
for the second one, via the state 1.

Here’s another simple example. The DFA

accepts the language that is described by the regular expression a(ba | cb)∗.
Notice that two loops on the same state (in this case, the loop ba from state 1
through state 0, and the loop cb from state 1 through state 2) corresponds to
the closure of the union of the two loops: the regular expressions a(ba)∗(cb)∗,
a(cb)∗(ba)∗ and a((ba)∗ | (cb)∗) describe different languages!

When things get more complicated, you need to take a more systematic
approach. The first step is to write down a set of simultaneous equations,
one for each state n, describing the set of strings that would be accepted if
n were an accepting state—we’ll call that set Ln—in terms of the sets of strings
corresponding to the other states.

There will be one case for each incoming transition, and we also need to
record that the start state(s) can be reached without reading any input. For
example, here are the equations for the DFA above:

L0 = ε | L1 b state 0 is initial and 1
b−→ 0

L1 = L0 a | L2 b 0
a−→ 1 and 2

b−→ 1
L2 = L1 c 1

c−→ 2

You get the result by solving for L1, because state 1 is the accepting state. Let’s
start by substituting for L0 and L2 in the equation for L1:

L1 = (ε | L1 b)a | L1 cb

and then apply distributivity and the identity law for concatenation:

L1 = εa | L1 ba | L1 cb
= a | L1(ba | cb)

Regular Expressions Describe All Regular Languages
347 31

Now it looks like we’re stuck, or maybe we’ve made a mistake: we have an
equation for L1 in terms of L1. What do we do now?

Don’t worry: this situation arises for any NFA that contains a loop. What
the equation for L1 is saying is that state 1 can be reached from the start state
by reading input a, or from state 1 by reading either ba or cb. That looks right.

Having got this far, you won’t be surprised to learn that there’s a trick for
solving equations of just this form:

Arden’s Rule. If R and S are regular expressions then X = R | XS has a Arden’s Rule is due to American
electrical engineer and computer
scientist Dean Arden (1925−2018), a
member of the team that built and
programmed Whirlwind, the first
real-time digital computer. See
7 https://en.wikipedia.org/wiki/
Arden’s_rule.

solution X = RS∗. If ε 	∈ L(S) then that’s the only solution.

Applying Arden’s Rule gives the same result as we originally got by inspection:

L1 = a(ba | cb)∗

This NFA has just one accepting state. If there were more, you would need to

We didn’t bother checking the
requirement that ε 	∈ L(ba | cb), but
it holds, and it will always hold for
the kind of examples you will
encounter.

solve for each of them and then take the union of those regular expressions.
That was easy! Let’s try the same method on a much more challenging

example:

Here are the equations for this DFA:

L0 = ε | L1 a | L2 b state 0 is initial, 1
a−→ 0 and 2

b−→ 0

L1 = L2 a | L0 b 2
a−→ 1 and 0

b−→ 1

L2 = L0 a | L1 b 0
a−→ 2 and 1

b−→ 2

We’ll start by substitutingL2 into the equation forL1, collecting terms involving
L0, then applying Arden’s Rule:

L1 = (L0 a | L1 b)a | L0 b
= L0 aa | L1 ba | L0 b
= L0(aa | b) | L1 ba
= L0(aa | b)(ba)∗

It’s completely okay to apply Arden’s Rule in a situation like this where the
equation involves variables—in this case L0—other than the one being solved
for.

https://en.wikipedia.org/wiki/Arden's_rule
https://en.wikipedia.org/wiki/Arden's_rule

31

348 Chapter 31 · Regular Expressions

Now we substitute L1 into the equation for L2:

L2 = L0 a | L0(aa | b)(ba)∗b
= L0(a | (aa | b)(ba)∗b)

Finally, we substituteL1 andL2 into the equation forL0, collect terms involving
L0, and apply Arden’s Rule to get the result:

L0 = ε | L0(aa | b)(ba)∗a | L0(a | (aa | b)(ba)∗b)b
= ε | L0(aa | b)(ba)∗a | L0 ab | L0(aa | b)(ba)∗bb
= ε | L0 ab | L0(aa | b)(ba)∗(a | bb)
= ε | L0(ab | (aa | b)(ba)∗(a | bb))
= ε(ab | (aa | b)(ba)∗(a | bb))∗
= (ab | (aa | b)(ba)∗(a | bb))∗

A different but equivalent result can be produced by following a different
sequence of reasoning steps. The bottom line is that this method can be used
to convert any finite automaton into a regular expression describing the same
language.Thatmeans that any regular language canbedescribedusing a regular
expression, which establishes the reverse implication that was our goal.

Exercises

1. Prove that RR∗ = R∗R.
2. For each of the following equations, either prove it using the laws of regular

expressions or give a counterexample to show that it is false.

(a) R∗ = ε | R | R∗RR
(b) (R∗S)∗ = (SR∗)∗
(c) (R | S)∗ = R∗ | S∗

3. Use the laws of regular expressions to prove that a(ba)∗b | (ab)∗ = (ab)∗.
4. Define an algebraic data type Regexp for representing a simplified form of

regular expressions which omits the closure operator. Then:

(a) Write a function language :: Regexp -> [String] which, given a
regular expression, returns its language in the form of a list of strings
without duplicates.

(b) Write a function simplify :: Regexp -> Regexp that converts a regular
expression to an equivalent simpler regular expression by use of the laws
R | R = R, R | ∅ = ∅ | R = R, Rε = εR = R and R∅ = ∅R = ∅.

5. A BNF grammar (see page 156) is right-linear if all of its rules are of the
form A:: = a or A:: = aB or A:: = ε where A,B are non-terminal symbols

If you aren’t familiar with the
terminology
“terminal”/“non-terminal symbol”
and/or with the language generated
by a grammar, see 7 https://en.
wikipedia.org/wiki/
Formal_grammar.

and a is a terminal symbol.
Show that every right-linear grammar generates a regular language. Hint:
Construct an NFA in which there is a state corresponding to every non-
terminal symbol.Youwill need todesignateoneof thenon-terminal symbols
as the “start symbol”.
Show that every regular language is generated by a right-linear grammar.
Hint: From a DFA, construct a grammar with a non-terminal symbol
corresponding to each state.

6. Give a formal definition of the iteration construction that, given an ε-
NFA M , produces a ε-NFA M∗ such that L(M∗) = L(M)∗. Hint: See
the definition of the concatenation construction on page 321.

7. Convert a(a|b)∗b to an ε-NFA.

https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar

Exercises
349 31

8. UseArden’s Rule to convert the followingDFAs to regular expressions that
describe the same languages:

9. Produce a regular expression for the complement of the regular expression
a(a|b)∗b via the following steps:

(a) convert a(a|b)∗b to an ε-NFA (see Exercise 7);
(b) convert that ε-NFA to a DFA;
(c) take the complement of that DFA; then
(d) using Arden’s Rule, convert that DFA into a regular expression.

10. Extend the language of regular expressions with operators for complement
and intersection, and show that the resulting language is still only able to
describe regular languages. Hint: See the constructions which showed that
the set of regular languages is closed under complement and intersection.

351 32

Non-Regular Languages

Contents

Boundaries of Expressibility – 352

Accepting Infinite Languages Using a Finite
Number of States – 352

A Non-Regular Language – 353

The Pumping Lemma – 354

Proving That a Language Is Not Regular – 354

Exercises – 355

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76908-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-76908-6_32

32

352 Chapter 32 · Non-Regular Languages

Boundaries of Expressibility

Having learned a lot about regular languages, different ways of describing
them, and a little about their applications, you will have rightly come to
understand that they are important. As you’ve seen, the union of two regular
languages is a regular language, and the samegoes for intersection, complement,
concatenation, and iteration. So, given just a few simple regular languages—for
example, {a} and {b}—you can build a large number of new regular languages.

But not all languages are regular. It’s easy to give an example of a non-
regular language, and not difficult to explain, at an intuitive level, why it can’t
be regular. Formalising this reasoning leads to a useful method for showing
that other languages are not regular.

In science and Mathematics, useful insight is often achieved by exploring
boundaries: limits on what can be expressed using given notations; limits on
the kinds of problems that can be solved using given methods; and limits on
the functions that can be computed using given amounts of time and/or space.
Understanding the features that distinguish regular languages fromnon-regular
languages sheds light onwhat can be donewith regular languages andmotivatesThere are classes of languages that

go beyond the regular languages but
can be expressed using methods that
are only a little more powerful, see
7 https://en.wikipedia.org/wiki/
Chomsky_hierarchy.

the investigation of ways of describing and processing languages that are not
regular. We’ll not pursue that exploration here, but what you’ve learned up to
this point provides a good foundation for going further.

Accepting Infinite Languages Using a Finite Number of
States

Many of the examples of finite automata you’ve seen—DFAs, NFAs, and ε-
NFAs—accept infinite languages. An example is the DFA M4 on page 286We’ll concentrate on DFAs in this

chapter because the explanation is
clearest in that case.

which accepts strings of binary digits that contain an odd number of 1s:

Any infinite language over a finite alphabet must include strings that are
longer than n, for any n ≥ 0. It’s interesting to look at what happens for strings
in such a language that are longer than the number of states in a DFA that
accepts the language.

For M4, 011010 is such a string, with the following computation: q0
0−→

q0
1−→ q1

1−→ q0
0−→ q0

1−→ q1
0−→ q1. Because the number of states visited by

that computation is greater than the number of states in M4, the computationThis is a consequence of the
pigeonhole principle, see 7 https://en.
wikipedia.org/wiki/
Pigeonhole_principle: if there are
more pigeons (states visited during a
computation) than holes (states in
M4), then some holes must contain
more than one pigeon.

must visit one or more of the states at least twice. Here, q0 is visited 4 times and
q1 is visited 3 times.

Let’s look at the repeated visits of q1. The computation can be broken up
into three phases:

1. from the start state q0 to the first visit of q1, reading 01;
2. from the first visit of q1 to the second visit of q1, reading 101;
3. after the second visit of q1, reading 0

We can write this as q0
01−→ q1

101−−→ q1
0−→ q1.Recall that q

a−→ q′ means that
(q, a, q′) ∈ δ. Here we’re using an
extension of this notation: q

s−→ q′
means that δ∗(q, s) = q′, for s ∈ �∗.

The fact that the computation includes a repetition of q1, with q1
101−−→ q1,

means thatM4 must also accept an infinite numberof similar strings that include
any number of repetitions of the substring 101:

https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/Pigeonhole_principle

A Non-Regular Language
353 32

• 01 0, with the computation q0
01−→ q1

0−→ q1 (0 repetitions);

• 01 101 101 0, with the computation q0
01−→ q1

101−−→ q1
101−−→ q1

0−→ q1 (2
repetitions);

• 01 101 101 101 0, with the computation q0
01−→ q1

101−−→ q1
101−−→ q1

101−−→ q1
0−→

q1 (3 repetitions);
• and so on.

That is, M4 must accept 01(101)i0, for every i ≥ 0.

The same reasoning applies to the repeated visits of q0: because q0
0−→

q0
11010−−−→ q1, M4 must accept 0i11010, for every i ≥ 0. (Seen in terms of three

phases of computation, we have q0
ε−→ q0

0−→ q0
11010−−−→ q1 which means that

M4 must accept ε0i11010, for every i ≥ 0.) For reasons that will become clear
later we’ll concentrate just on the first two repeated visits of states, but the same
also applies to any pair of repeated visits. And of course, the same reasoning
applies to any DFA that accepts an infinite language, not justM4.

A Non-Regular Language

A simple example of a non-regular language is L1 = {anbn | n ≥ 0}: the strings Observe that L1 is related to the
language of arithmetic expressions
with balanced parentheses. Think of
a and b as representing left and right
parentheses, respectively, with the
“content” of the arithmetic
expression removed, and with the
simplifying assumption that all of the
left parentheses precede all of the
right parentheses.

over {a, b} consisting of a sequence of as followed by a sequence of bs, where
the number of as and bs match.

Before showing that L1 cannot be regular, let’s try to describe it using a
DFA. We’ll need states to count the number of as at the beginning, and then
corresponding states to count the number of bs at the end, accepting the input
if both numbers match. Something like this:

The use of ellipses (· · ·) mean that this isn’t a DFA, but nevertheless the
diagram makes the idea clear. Ignoring the part of the diagram involving
ellipses, it’s easy to check that thisDFAaccepts the language {anbn | 4 ≥ n ≥ 0}.
To accept the language {anbn | m ≥ n ≥ 0}, the diagram just needs to be
extended to the right to include states 0, . . . ,m and 0′ . . . , (m − 1)′.

Of course, theproblem is that acceptingL1 without anupper limit onnwould
require extending the diagram infinitely far to the right, and that’s impossible
because of the requirement that a DFA has a finite set of states. The number of
states, whatever it is, imposes a limit on the number of as that can be counted.
If there are more as than that, there’s no way to be sure that the number of as
and bs match.

We can turn this idea into a proof by contradiction that L1 is not regular,
using the fact that computations that are longer than the number of states in a
DFA must contain repeated states.

Proof. Assume that L1 is regular; then there is a DFA M1 such that L(M1) =
L1. Let k be the number of states in M1. Consider the string x = akbk ∈ L1.
Since the number of states in the computation of ak is greater than k, there
must be at least one repeated state during the computation that accepts x while

32

354 Chapter 32 · Non-Regular Languages

reading this first part of x. The computation must be q0
ar−→ q

as−→ q
atbk−−→ q′,

where q0 is the initial state, q is the first repeated state, r+s+t = k and s > 0, and
q′ is an accepting state. Then M1 must also accept ar+tbk via the computation

q0
ar−→ q

atbk−−→ q′. But ar+tbk �∈ L1 because r + t �= k, so L(M1) �= L1. This is a
contradiction, so the assumption that L1 is regular was false.

This proof shows thatM1 must incorrectly accept ar+tbk since the part of the
computation between the first two visits of q can be removed without affecting
acceptance. Repeating this part of the computation rather than removing it
won’t affect acceptance either, meaning that M1 will also incorrectly accept
ar+2s+tbk , ar+3s+tbk , etc.

The Pumping Lemma

The steps in the proof showing that L1 = {anbn | n ≥ 0} is not regular can be
used to prove that many other languages are not regular. The proof method is
captured by the following lemma:

Pumping Lemma. LetM be a DFA with k states, and let x ∈ L(M). If |x| ≥ k
then there are strings u, v,w such that:

|x| is the length of the string x.

i. uvw = x;
ii. |v| > 0;
iii. |uv| ≤ k; and
iv. uviw ∈ L(M) for every i ≥ 0.

Proof. Since |x| ≥ k, the computation of M that accepts x must visit at least
k+1 states. It follows that some state qmust be visited at least twice in the first
k + 1 steps of that computation. That computation can therefore be written as
q0

u−→ q
v−→ q

w−→ q′, where q0 is the start state, q′ is an accepting state, uvw = x,
|v| > 0 and |uv| ≤ k. Since q

v−→ q ends in the same state as it starts, this part of
the computation can be repeated—“pumped”—any number of times, including

zero, giving q0
u−→ q

vi−→ q
w−→ q′ for every i ≥ 0. This shows thatM accepts uviw

for every i ≥ 0.

We can apply the Pumping Lemma to give a simpler proof thatL1 = {anbn |
n ≥ 0} is not regular:

Proof. Assume that L1 is regular; then there is a DFA M1 such that L(M1) =
L1. Let k be the number of states in M1. Consider the string x = akbk ∈ L1.
By the Pumping Lemma, there are strings u, v,w such that uvw = x, |v| > 0,
|uv| ≤ k, and uviw ∈ L(M1) for every i ≥ 0. Therefore u = ar, v = as and
w = atbk for s > 0, and ar+is+tbk ∈ L(M1) for every i ≥ 0. But ar+is+tbk �∈ L1
unless i = 1, since s > 0, so L(M1) �= L1. This is a contradiction, so the
assumption that L1 is regular was false.

Proving That a Language Is Not Regular

The Pumping Lemma is a useful tool for proving that languages are not regular.
Let’s use it to prove that another language,L2 = {an | n = m2 for some m ≥ 0},
is not regular.

Exercises
355 32

Proof. Assume that L2 is regular; then there is a DFA M2 such that L(M2) =
L2. Let k be the number of states inM2. Consider the string x = a(k2) ∈ L(M2).
Since |x| ≥ k, by the Pumping Lemma there are strings u, v,w such that uvw =
x, |v| > 0, |uv| ≤ k, and uviw ∈ L(M2) for every i ≥ 0. That is, u = ar, v = as

and w = at where s > 0, r + s ≤ k, r + s + t = k2, and uviw = ar+is+t ∈ L(M2)

for every i ≥ 0. Let i = 2; then r + is + t = k2 + s. We have k2 < k2 + s (since
s > 0) and k2 + s < k2 + 2k + 1 = (k + 1)2 (since r + s ≤ k). This shows that
uviw is not in L2, so L(M2) �= L2. This is a contradiction, so the assumption
that L2 is regular was false.

The strategy for using the Pumping Lemma to prove that a language L is
not regular is always the same:

1. Begin by assuming that L is regular. The goal is to use the Pumping Lemma
to reach a contradiction from this assumption.

2. Because of the assumption that L is regular, there must be some DFA M
such that L(M) = L. Let k be the number of states inM .

3. Choose some string x ∈ L with |x| ≥ k.
4. Apply the Pumping Lemma to break up x into u, v and w that satisfy

properties i−iii.
5. Pick a value of i ≥ 0 which allows you to prove that uviw �∈ L.
6. Property iv of the Pumping Lemma guarantees that uviw ∈ L(M) for every

i ≥ 0, so this contradicts the assumption that L = L(M).
7. Having reached a contradiction, conclude that the initial assumption—that

L is regular—was false.

Having this fixed strategy makes it easy to structure the proof. Nevertheless,
getting the details right can be tricky. Here are some tips and potential pitfalls:

• Pitfall: in step 2, you don’t know anything aboutM , other than L(M) = L,
and you can’t assume anything about the value of k.

• Tip: the choice of x in step 3 is crucial. You can pick any x ∈ L you want.
If possible, pick x whose first k symbols are the same, in order to simplify
the reasoning in steps 4−5.

• Tip: in step 4, if you have chosen x appropriately then from properties i−iii
in the Pumping Lemma you can conclude the form that u, v and w must
have, which is useful in step 5.

• Pitfall: in step 4, the only information you have about u, v andw is properties
i−iii.

• Tip: the choice of i in step 5 is sometimes crucial. Any choice other than
i = 1 will work for some languages, while in other cases you need to select
i carefully to make it possible to prove that uviw �∈ L.

• Pitfall: in step 5, the only things you can use to prove that uviw �∈ L is your
choice of i, what you can conclude about u, v and w from properties i−iii,
and the definition of L.

Exercises

1. If L ⊆ L′ then L being regular says nothing about whether or not L′
is regular, and vice versa. Give examples of all four regular/non-regular
combinations.

2. Let � be an alphabet. Prove that every finite language L ⊆ �∗ is regular.
3. Use the Pumping Lemma to show that L3 = {ambn | m > n} is not a regular

language.
4. Use the Pumping Lemma to show that L4 = {xx | x ∈ {a, b}∗} is not a

regular language.

32

356 Chapter 32 · Non-Regular Languages

5. Use thePumpingLemmato showthatL5 = {x ∈ {a, b}∗ | x is a palindrome}
is not a regular language.

A palindrome is a string that reads
the same backward as forward, like
the Finnish word
“saippuakivikauppias”.

6. Use the Pumping Lemma to show that L6 = {anb2n | n ≥ 0} is not a regular
language.

7. Use the Pumping Lemma to show that L7 = {an | n is not prime} is not a
regular language.Hint: It’s easier to prove that the complement of L7 is not
regular.

8. Find the errors in the following attempt to prove that

L8 = {x ∈ {a, b}∗ | the number of as and bs in x are the same}
is not a regular language:

Proof. Assume thatL8 is regular; then there is aDFAM8 such thatL(M8) =
L8. Suppose that M8 has k = 10 states. Consider the string x = a5b5 ∈
L(M8). Since |x| ≥ k, by the Pumping Lemma there are strings u, v,w such
that uvw = x, |v| > 0, |uv| ≤ k, and uviw ∈ L(M8) for every i ≥ 0. That
is, u = ar, v = as and w = atb5 where s > 0, r + s ≤ k, r + s + t = 5, and
uviw = ar+is+t ∈ L(M8) for every i ≥ 0. Let i = 0; then r+ is+t = 5−s �= 5
because s > 0. This shows that uviw is not in L8, so L(M8) �= L8. This is a
contradiction, so the assumption that L8 is regular was false.

357

Supplementary
Information
Appendix: The Haskell Ecosystem – 358

Index – 361

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Sannella et al., Introduction to Computation, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-76908-6

https://doi.org/10.1007/978-3-030-76908-6

358 Appendix: The Haskell Ecosystem

Appendix: The Haskell Ecosystem

Haskell is the work of a substantial group of computer scientists and software
developers, and it has a large and enthusiastic worldwide community of users
from industry and academia. Their combined efforts have produced useful
tools, documentation, learning materials, and other resources for Haskell
programmers.

The Haskell Website

Awide range of Haskell-related material is available at7 https://www.haskell.
org/. This includes most of the items listed below, as well as links to books and
videos about Haskell and other learning material.

The Haskell Language

This book uses Haskell 2010, which is defined in the Haskell 2010 Language
Report (7 https://www.haskell.org/onlinereport/haskell2010/). Beginners who
have no previous experience with language definitions will probably find it
a little hard to read, but it’s the definitive source for detailed and complete
information about Haskell’s syntax and semantics.

The Haskell Compiler GHC and Interactive Environment GHCi

The de facto standard implementation ofHaskell is GHC, theGlasgowHaskell
Compiler, which is available for all of the usual computing platforms. GHC

See 7 https://en.wikipedia.org/wiki/
Glasgow_Haskell_Compiler for
information about the history and
architecture of GHC.

can be downloaded from 7 https://www.haskell.org/ghc/, but it’s better to
install the Haskell Platform from 7 https://www.haskell.org/platform/ which
also includes the main Haskell library modules and tools.

The GHC User’s Guide, which provides pragmatic information about
using GHC, is available at 7 https://downloads.haskell.org/ghc/latest/docs/
html/users_guide/. It includes information about extensions to Haskell, some
of which—for example, InstanceSigs, to allow type signatures in instance
declarations—have been mentioned in this book. Extensions are available via
command-line switches when invoking GHC from the command line, or by
including a line like

{-# LANGUAGE InstanceSigs #-}

at the top of your file.
The easiest way to use Haskell is by running GHCi, the GHC interactive

environment. This allows you to load and run Haskell programs, including
programs that have been previously compiled usingGHC, and evaluateHaskell
expressions. The examples of interactive Haskell use in this book show what
happenswhen you runprograms inGHCi.TheGHCUser’sGuide also includes
information about commands like :load (abbreviated :l) and :reload (:r)
for loadingHaskell programs,:type (:t) for finding the type of an expression,
and :set (:s) for setting options, including :set +s for displaying run-time
and memory statistics after an expression is evaluated.

https://www.haskell.org/
https://www.haskell.org/
https://www.haskell.org/onlinereport/haskell2010/
https://en.wikipedia.org/wiki/Glasgow_Haskell_Compiler
https://en.wikipedia.org/wiki/Glasgow_Haskell_Compiler
https://www.haskell.org/ghc/
https://www.haskell.org/platform/
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/

Appendix: The Haskell Ecosystem
359

The Haskell Library, Hackage, and Hoogle

The Haskell Prelude, which contains many familiar types, type classes, and
functions, is specified in the Haskell 2010 Language Report and is imported
automatically into every module. Also specified there is a set of standard
library modules that are regarded as part of Haskell and can be imported
as required. Thousands of additional modules are available from Hackage
(7 https://hackage.haskell.org/), the Haskell community’s repository of open
source Haskell software. Most of these aren’t included in Haskell installations

For instance, run the command
$ cabal install teeth

to install Anatomy.Teeth, which
contains things like
CentralIncisor :: ToothType.

by default, and need to be installed if you want to use them.
Hoogle (7 https://hoogle.haskell.org/) makes it easy to search the Haskell

libraries, including the Prelude and some of Hackage. You can search by name
or by approximate type signature. Once you’ve found what you’re looking for,
you can follow a link to check the Haskell definition.

You may notice a similarity between
the name “Hoogle” and the name of
another search engine.The Edinburgh Haskell Prelude (7 https://github.com/wadler/edprelude)

contains facilities for pretty-printing user-defined algebraic data types. It
also provides simplified types for some of Haskell’s built-in functions, and
consistently uses arbitrary-precision Integer in place of Int, to encourage

See 7 https://blockchain-projects.
readthedocs.io/overflow.html for
information about an integer
overflow attack against the
Ethereum blockchain which shut
down ERC-20 trading.

use of types that aren’t subject to overflow.

The Cabal Installation Tool

Cabal 7 https://www.haskell.org/cabal/ is a tool for managing and installing
Haskell softwarepackages.Cabalkeeps trackofdependenciesbetweenpackages,

A package is a distributable unit of
Haskell code, for example a set of
modules that belong together.

and installing one package will automatically install all of the packages that it
depends on.

The Haskell Profiler and Debugger

GHC includes a profiler which allows you to find out which parts of your
program are consuming the most time and space while running. Instructions
for profiling are included in the GHC User’s Guide.

GHCi includes a simple interactive debugger in which you can stop a
computation at user-defined “breakpoints” and check the values of variables
before resuming. Instructions for using the debugger are also included in the
GHC User’s Guide.

https://hackage.haskell.org/
https://hoogle.haskell.org/
https://github.com/wadler/edprelude
https://blockchain-projects.readthedocs.io/overflow.html
https://blockchain-projects.readthedocs.io/overflow.html
https://www.haskell.org/cabal/

361 A–C

Index

Symbols
<- (drawn from), 38
↔ (bi-implication), 221
〈〈. . .〉〉 (ε-closure), 318
¬ (negation), 27
⊕ (exclusive or), 28
. . . | . . . (regular

expression union),
340

: {. . . : } (multi-line
input), 171

→ (implication), 28, 220
� (double turnstile), 49
∅ (empty set), 2
∅ (regular expression),

340
| . . . | (cardinality of a

set), 2
| . . . | (length of a

string), 354
∨ (disjunction), 27
|| (disjunction), 18
∧ (conjunction), 27
&& (conjunction), 18
() (0-tuple), 37, 326
++ (append), 35, 96
. (function

composition), 113
/= (inequality test), 9
: (cons), 34, 82
:t (query type of

expression), 12
= (definitional equality),

18
== (equality test), 9, 18
==> (conditional test),

56
» (then), 324
»= (bind), 327
[…|…] (list

comprehension), 38
[] (empty list), 34, 82
$ (function

application), 114
\ (lambda), 112
…[…:= …]

(substitution), 330
` (backtick), 16
. . .∗ (regular expression

closure), 341
– (comment), 18
@ (as-pattern), 311
_ (wildcard), 19
!! (select), 94

A
Abstraction barrier, 212
Accepted
– language, 285, 297,

309, 318
– string, 283, 296, 309,

318

Accumulator, 84
Actual parameter, 17
Alphabet, 287, 294, 317
and, 39, 84
Antecedent, 49
Antisymmetric, 86
API, 190, 206
Append, 35
Application
– function, 5, 11
– partial, 101, 107
Arden’s Rule, 347
Arithmetic, 16
– Peano, 95
Arrow rule, 234
As-pattern, 311
Associative, 3, 107, 108
Atom, 179

B
Backtick, 16
Barbara (rule), 65, 72
Base case, 82
Best-first search, 265
Bi-implication, 221
Bifunctor (type

class), 255
Big-O notation, 191
Binding, 20
Black box, 206
Black hole, 286
– convention, 291, 305
Bool (type), 8, 132
Boolean algebra, 120,

187, 222
Bounded (type class),

257
Breadth-first search,

263

C
Cabal, 359
Cardinality, 2
Cartesian product, 4,

272
case, 139
Case analysis, 18
Char (type), 8
Circuit diagram, 223
Clausal form, 180
Clause, 162, 178, 179
Closure
– ε, 318
– regular expression,

341
CNF, 162, 167, 178, 220
Combination, 275
Combinator, 115
Combinatorial

explosion, 270
Command, 324

362 Index

Comment, 18
Commutative, 3
Complement
– DFA, 297
– set, 4, 26, 44
Complex (type), 253
Concatenation
– ε-NFA, 321, 343
– regular expression,

340
Conclusion, 65
Condition
– necessary, 221
– sufficient, 221
Conditional expression,

18
Conjunction, 18, 27
– predicate, 120
Conjunctive normal

form, 162, 167, 178,
220

Connective, 27, 44
Consistent, 180
Constructor, 82, 132
– symbolic, 147
– type, 254
Contradiction, 29
Contraposition, 66, 74
Contrapositive, 66, 222
curry, 114

D
Data structure, 34
De Morgan’s laws, 6,

122, 162
Decidable, 44
Default, 250
δ (state transition

function/relation),
294, 318

δ∗ (extended state
transition function),
296, 309, 318

Deny conclusion, 72
Depth-first search, 262
Deterministic, 286
– finite automaton,

287, 294
DFA, 287, 294
– complement, 297
– product, 298
– sum, 301
Diagram
– Euler, 63
– Venn, 24, 62
Difference (set), 3, 26
Disjunction, 18, 27
– predicate, 120
Disjunctive normal

form, 163, 165
div, 16
Divide and conquer, 87
Division, 16
DNF, 163, 165
do notation, 329
Double (type), 8, 253

Dr Seuss, 159
drop, 94

E
Effect, 324
Either (type

constructor), 139
– instance of
Bifunctor, 255

elem, 40
Empty
– list, 34, 82
– set, 2
Enum (type class), 252
ε

– (empty string), 287
– (regular expression),

340
ε-closure, 318
ε-NFA, 317
– concatenation, 321,

343
– iteration, 344
– sum, 343
ε-transition, 287, 316
Eq (type class), 9, 250
Equality, 2, 9, 18
– for sets, 2
Equisatisfiable, 220
Equivalence, 67
– logical, 221
Error
– syntax, 52
– type, 12, 52
Euler diagram, 63
Evaluation function,

265
Evil, 190
Exponential

complexity, 185, 232
Export, 206
Expression
– arithmetic, 16
– conditional, 18
– enumeration, 39, 252
– lambda, 112, 173

F
F (accepting states of an

automaton), 294,
318

filter, 103, 171
Finite automaton, 282,

294
– deterministic, 287,

294
– non-deterministic,

304
– with ε-transitions,

317
Float (type), 8, 253
Floating (type class),

253
foldl, 105
foldr, 104

Index
363 C–M

Formal parameter, 17
Fractional (type

class), 253
Function, 5, 8
– accumulator, 84
– application, 5, 11
– body, 17
– characteristic, 5
– composition, 5, 113
– definition, 17
– evaluation, 265
– helper, 19
– higher-order, 100,

112
– identity, 5, 113
– overloaded, 248
– recursive, 82
– selector, 37
Functor (type class),

254

G
Generate and test, 270
Generator, 38
Graph, 260
Guard, 18, 38

H
Hackage, 359
Haskell, X
– library, 35, 359
– Prelude, 35, 206, 359
– script, X
head, 34, 82
Helper function, 19
Hill climbing, 267
Hoogle, 11, 35, 359

I
Idempotent, 218
Identity
– element, 104
– function, 5, 113
Iff, 221
Implication, 28, 220
import, 35, 206
Induction, 95
– structural, 152
Inequality, 9
Infix, 16
Inhabited, 73
Inherit, 251
Instance, 248
Int (type), 8, 253
Integer (type), 22,

253
Integers, 2
Integral (type class),

253
Interface, 190, 206
Intersection, 3, 26
Invariant, 194, 196, 199,

208
– breaking, 209

– preserving, 208
IO (type constructor),

324
Iterative deepening

search, 268

J
Joke, 107, 183

K
Karnaugh map, 162
Kleene star, 341

L
L(M) (language

accepted byM), 285,
287, 297, 309, 318

L(R) (language
described by R), 340

Lambda expression,
112, 173

Language, 285, 297,
309, 318

– non-regular, 353
– regular, 297
Lazy evaluation, 39, 261
Lexicographic order,

252
Library, 35, 359
Lightbulb, 8, 268
Linear complexity, 232
List, 34, 82, 137
– comprehension, 38,

47
– constructor, 82
– empty, 34, 82
– head, 34, 82
– infinite, 39
– instance of
Functor, 254

– instance of Monad,
331

– instance of
MonadPlus, 332

– notation, 34
– tail, 34, 82
– type, 34
Literal, 36, 162, 178, 179
– complementary, 234,

238
Logic
– gate, 224
– propositional, 44
– symbolic, 62

M
map, 101
Maybe (type

constructor), 138
– instance of
Functor, 254

Memoisation, 280
mod, 16

364 Index

Model of computation,
282

module, 206
Monad, 330
Monad (type class), 331
MonadPlus (type

class), 332
Monoid, 330

N
Natural numbers, 2
Negation, 27
– double, 67, 162
– predicate, 65, 120
newtype, 180
NFA, 304
Nikkō-Shirane, 304
Non-determinism, 331
Non-deterministic, 304
– finite automaton, 304

– with ε-transitions,
317

Nonsense, 82
Normal form, 162
– conjunctive, 162, 167,

178, 220
– disjunctive, 163, 165

– full, 168
NP-complete, 185, 232
Num (type class), 10, 253

O
O(. . .) (big-O notation),

191
Offside rule, 21
Optional value, 138
or, 39, 84
Ord (type class), 86, 250
Ordered pair, 4

P
Package, 359
Pair, 4
Parameter
– actual, 17
– formal, 17
Parser, 333
Pattern, 36, 37
Permutation, 273
Pigeonhole principle,

352
Point-free style, 108
Powerset, 4
– construction, 312,

319
Precedence, 16, 107
Predicate, 46, 62, 103
– conjunction, 120
– disjunction, 120
– negation, 65, 120
Prefix, 17
Prelude, 35, 206, 359
Premise, 65
Priority queue, 265

product, 39, 84
Product
– construction, 298
– DFA, 298
Proof, 67
Proposition, 147
Pumping lemma, 354
putChar, 324
putStr, 325
putStrLn, 325

Q
Q (states of an

automaton), 294,
317

Quantifier, 170
– existential, 170
– universal, 170
Queue, 263
QuickCheck, 55

R
Rational (type), 253
Real (type), 253
Recursion, 82
– mutual, 154
– simultaneous, 92
– tail, 97
Recursive
– function, 82
– type, 82
Reflexive, 249
Regular
– expression, 340

– closure, 341
– concatenation, 340
– union, 340

– language, 297
Rejected string, 283
Relation, 4, 172
Rule, 65
– arrow, 234
– sound, 65
Run time
– constant, 191
– exponential, 185, 191,

232
– linear, 191, 232
– logarithmic, 191
– quadratic, 191

S
S (start states of an

automaton), 294,
318

Satisfiable, 29, 150
– checking, 178, 232
Satisfy
– predicate, 47
– sequent, 49
Scope, 20, 112, 175
Script, X
Search
– best-first, 265

Index
365 M–U

– breadth-first, 263
– depth-first, 262
– iterative deepening,

268
Search space, 260
Section, 107, 112, 172
Selector, 37
Semantics, 146
Sequent, 49, 63, 123
– calculus, 126, 222
– satisfiable, 157
– simple, 126
– universally valid, 127
– valid, 49, 123
Set, 2
– cardinality, 2
– complement, 4, 26, 44
– comprehension, 3, 38
– difference, 3, 26
– elements, 2
– empty, 2
– equality, 2
– intersection, 3, 26
– membership, 2
– power, 4
– singleton, 2
– specifying, 3
– union, 3, 26
show, 37
Show (type class), 250
� (alphabet), 294, 317
�∗ (the set of strings

over �), 287
Simpsons, 65
Singleton, 2
Sort
– insertion, 85
– merge, 88
– quick, 86
Sorting, 85
Sound rule, 65
State, 282, 294, 317
– accepting, 283, 294,

318
– rejecting, 294
– start, 282, 294, 318
String (type), 8, 36
Sublist, 271
Subset, 2
Succedent, 49
Sum
– ε-NFA, 343
– DFA, 301
sum, 38, 84
Superstate, 312
Syllogism, 62
Symmetric, 249
Syntax, 146
– abstract, 147
– concrete, 147
– error, 52

T
tail, 34, 82

take, 94
Tautology, 29
Test
– conditional, 56
– equality, 9, 18
– inequality, 9
– system, 216
– unit, 216
Testing, 52
– polymorphic

properties, 57
– property-based, 54
Thing, 2
Thinko, 52
Trace, 297
Transition, 282, 294,

318
– relation, 294, 318
Transitive, 52, 249
Traversal, 262
– breadth-first, 263
– depth-first, 262
– inorder, 197
Tree, 144
– AVL, 198
– balanced, 198
– binary search, 196
– depth, 195
– leaf, 195
– node, 195

– label, 195
– root, 195
Truth table, 27
Tseytin transformation,

226
Tuple, 37, 136
Turing machine, 282
2-SAT, 232
Type, 8
– abstract data, 207,

216
– algebraic, 132
– checking, 11
– class, 10, 133, 248

– instance, 248
– constructor, 254
– data, 132
– disjoint union, 140
– enumerated, 10, 133
– error, 12, 52
– inference, 8
– polymorphic, 9
– recursive, 82
– signature, 8
– synonym, 11
– variable, 9
Typing relation, 8

U
uncurry, 114
Union
– regular expression,

340
– set, 3, 26

366 Index

Universe, 4, 24
– of discourse, 44

V
Valuation, 149
Variable, 17
Venn diagram, 24, 62

W
Well-founded, 82
where, 20
Whoosh-style

programming, 39
Wildcard, 19

Z
zip, 92

	Preface
	Contents
	1 Sets
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Things and Equality of Things
	Sets, Set Membership and Set Equality
	Subset
	Set Comprehensions
	Operations on Sets
	Ordered Pairs and Cartesian Product
	Relations
	Functions
	Exercises

	2 Types
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Sets Versus Types
	Types in Haskell
	Polymorphic Types
	Equality Testing, Eq and Num
	Defining New Types
	Types Are Your Friend!
	Exercises

	3 Simple Computations
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Arithmetic Expressions
	Int and Float
	Function Definitions
	Case Analysis
	Defining Functions by Cases
	Dependencies and Scope
	Indentation and Layout
	Exercises

	4 Venn Diagrams and Logical Connectives
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Visualising Sets
	Visualising Operations on Sets
	Logical Connectives
	Truth Tables
	Exercises

	5 Lists and Comprehensions
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Lists
	Functions on Lists
	Strings
	Tuples
	List Comprehensions
	Enumeration Expressions
	Lists and Sets
	Exercises

	6 Features and Predicates
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Logic
	Our Universe of Discourse
	Representing the Universe
	Things Having More Complex Properties
	Checking Which Statements Hold
	Sequents
	Exercises

	7 Testing Your Programs
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Making Mistakes
	Finding Mistakes Using Testing
	Testing Multiple Versions Against Each Other
	Property-Based Testing
	Automated Testing Using QuickCheck
	Conditional Tests
	Test Case Generation
	Testing Polymorphic Properties
	Exercises

	8 Patterns of Reasoning
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Syllogisms
	Relationships Between Predicates
	A Deductive Argument
	Negated Predicates
	Contraposition and Double Negation
	More Rules
	Exercises

	9 More Patterns of Reasoning
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Denying the Conclusion
	Venn Diagrams with Inhabited Regions
	Contraposition Again
	Checking Syllogisms
	Finding Counterexamples
	Symbolic Proofs of Soundness
	Deriving All of the Sound Syllogisms
	Exercises

	10 Lists and Recursion
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Building Lists
	Recursive Function Definitions
	More Recursive Function Definitions
	Sorting a List
	Recursion Versus List Comprehension
	Exercises

	11 More Fun with Recursion
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Counting
	Infinite Lists and Lazy Evaluation
	Zip and Search
	Select, Take and Drop
	Natural Numbers
	Recursion and Induction
	Exercises

	12 Higher-Order Functions
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Patterns of Computation
	Map
	Filter
	Fold
	foldr and foldl
	Combining map, filter and foldr/foldl
	Curried Types and Partial Application
	Exercises

	13 Higher and Higher
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Lambda Expressions
	Function Composition
	The Function Application Operator $
	Currying and Uncurrying Functions
	Bindings and Lambda Expressions
	Exercises

	14 Sequent Calculus
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Combining Predicates
	The 147Immediate148 Rule
	De Morgan's Laws
	Sequents Again
	Adding Antecedents and Succedents
	Sequent Calculus
	Proofs in Sequent Calculus
	Exercises

	15 Algebraic Data Types
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	More Types
	Booleans
	Seasons
	Shapes
	Tuples
	Lists
	Optional Values
	Disjoint Union of Two Types
	Exercises

	16 Expression Trees
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Trees
	Arithmetic Expressions
	Evaluating Arithmetic Expressions
	Arithmetic Expressions with Infix Constructors
	Propositions
	Evaluating Propositions
	Satisfiability of Propositions
	Structural Induction
	Mutual Recursion
	Exercises

	17 Karnaugh Maps
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Simplifying Logical Expressions
	Conjunctive Normal form and Disjunctive Normal form
	Karnaugh Maps
	Converting Logical Expressions to DNF
	Converting Logical Expressions to CNF
	Exercises

	18 Relations and Quantifiers
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Expressing Logical Statements
	Quantifiers
	Relations
	Another Universe
	Dependencies
	Exercises

	19 Checking Satisfiability
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Satisfiability
	Representing CNF
	The DPLL Algorithm: Idea
	The DPLL Algorithm: Implementation
	Application: Sudoku
	Exercises

	20 Data Representation
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Four Different Representations of Sets
	Rates of Growth: Big-O Notation
	Representing Sets as Lists
	Representing Sets as Ordered Lists Without Duplicates
	Representing Sets as Ordered Trees
	Representing Sets as Balanced Trees
	Comparison
	Polymorphic Sets
	Exercises

	21 Data Abstraction
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Modular Design
	Sets as Unordered Lists
	Sets as Ordered Lists Without Duplicates
	Sets as Ordered Trees
	Sets as AVL Trees
	Abstraction Barriers
	Abstraction Barriers: SetAsOrderedTree and SetAsAVLTree
	Abstraction Barriers: SetAsList and SetAsOrderedList
	Testing
	Exercises

	22 Efficient CNF Conversion
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	CNF Revisited
	Implication and Bi-implication
	Boolean Algebra
	Logical Circuits
	The Tseytin Transformation
	Tseytin on Expressions
	Exercises

	23 Counting Satisfying Valuations
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	2-SAT
	Implication and Order
	The Arrow Rule
	Complementary Literals
	Implication Diagrams with Cycles
	Exercises

	24 Type Classes
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Bundling Types with Functions
	Declaring Instances of Type Classes
	Defining Type Classes
	Numeric Type Classes
	Functors
	Type Classes are Syntactic Sugar
	Exercises

	25 Search in Trees
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Representing a Search Space
	Trees, Again
	Depth-First Search
	Breadth-First Search
	Best-First Search
	Exercises

	26 Combinatorial Algorithms
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	The Combinatorial Explosion
	Repetitions in a List
	Sublists
	Cartesian Product
	Permutations of a List
	Choosing k Elements from a List
	Partitions of a Number
	Making Change
	Eight Queens Problem
	Exercises

	27 Finite Automata
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Models of Computation
	States, Input and Transitions
	Some Examples
	Deterministic Finite Automata
	Some More Examples
	How to Build a DFA
	Black Hole Convention
	Exercises

	28 Deterministic Finite Automata
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Diagrams and Greek Letters
	Deterministic Finite Automata, Formally
	Complement DFA
	Product DFA
	Sum DFA
	Exercises

	29 Non-deterministic Finite Automata
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Choices, Choices
	Comparing a DFA with an NFA
	Some More Examples
	Non-deterministic Finite Automata, Formally
	NFAs in Haskell
	Converting an NFA to a DFA
	ε-NFAs
	Concatenation of ε-NFAs
	Exercises

	30 Input/Output and Monads
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Interacting with the Real World
	Commands
	Performing Commands
	Commands That Return a Value
	do Notation
	Monads
	Lists as a Monad
	Parsers as a Monad
	Exercises

	31 Regular Expressions
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Describing Regular Languages
	Examples
	Simplifying Regular Expressions
	Regular Expressions Describe Regular Languages
	Regular Expressions Describe All Regular Languages
	Exercises

	32 Non-Regular Languages
	Donald Sannella 慮搠 Michael Fourman 慮搠 Haoran Peng 慮搠 Philip Wadler
	Boundaries of Expressibility
	Accepting Infinite Languages Using a Finite Number of States
	A Non-Regular Language
	The Pumping Lemma
	Proving That a Language Is Not Regular
	Exercises

	A Supplementary Information
	
	Appendix: The Haskell Ecosystem
	The Haskell Website
	The Haskell Language
	The Haskell Compiler GHC and Interactive Environment GHCi
	The Haskell Library, Hackage, and Hoogle
	The Cabal Installation Tool
	The Haskell Profiler and Debugger
	Indexheight12pt depth0pt width0pt

	Index

